
Seagull - Core

Table of contents

1 Installation.. 4

1.1 Platforms supported... 4

1.2 Installing Octave.. 4

1.3 Compiling Seagull from source code...4

1.4 Installing Seagull... 5

1.5 Uninstalling Seagull...6

1.6 Upgrading Seagull... 6

2 Using Seagull... 7

2.1 Traffic profile...7

2.2 Controlling Seagull.. 8

2.2.1 Keyboard control...8

2.2.2 Remote control.. 11

2.2.3 Posix signal control... 12

2.3 Navigating through the screens..12

3 Concepts and definitions.. 13

3.1 Scenario..13

3.2 Session-Id...13

3.3 Transport protocols and channels.. 14

3.4 SCTP transport...16

3.5 Multi-channels... 16

3.6 Traffic Models... 16

4 Seagull scenario..19

4.1 Scenario sections..19

4.1.1 Counter section..19

4.1.2 Correlation section.. 20

4.1.3 Init section... 20

4.1.4 Default section...20

4.1.5 Abort section... 21

4.1.6 Traffic section..21

4.2 Actions in scenarios... 21

Copyright © 2006 HP OpenCall Software All rights reserved.

4.3 Call variables... 22

4.4 Counters... 22

4.5 Store and restore of protocol parameters... 22

5 Message and parameters control.. 23

5.1 Enabling and disabling controls...23

5.2 Behaviour when a control fails.. 24

5.3 Presence check... 25

5.4 Parameter value check... 25

5.5 Message order check..26

6 External data management... 27

6.1 Description...27

6.2 Example... 28

7 Authentication.. 29

8 Statistics..30

8.1 Global statistics..30

8.2 Response time statistics... 31

8.3 Protocol statistics... 34

8.4 Scenario statistics...34

8.5 Getting statistics out of response time raw data...35

9 Logs and traces...38

10 Configuration files.. 38

10.1 Generic configuration...38

10.2 Protocol dictionary... 39

10.2.1 Protocol..40

10.2.2 Types..40

10.2.3 Header..40

10.2.4 Body...42

10.2.5 body-method.. 42

10.2.6 external-method... 42

10.2.7 Dictionary.. 43

11 Correlation.. 43

11.1 Correlation with open id feature...46

12 Getting support... 46

13 Reference.. 46

13.1 Generic configuration reference...47

13.1.1 Transport configuration... 47

Seagull - Core

Page 2
Copyright © 2006 HP OpenCall Software All rights reserved.

13.1.2 Generic configuration.. 50

13.2 Configuration parameters...56

13.3 Scenario reference.. 56

13.4 Command line arguments...66

13.5 Seagull return code...66

14 Miscellaneous tools.. 66

Seagull - Core

Page 3
Copyright © 2006 HP OpenCall Software All rights reserved.

1. Installation

1.1. Platforms supported
• Linux: Seagull supports Linux. It has been successfully tested with Debian, RedHat Advanced Server

2.1, RedHat Enterprise Linux 3.0, Suse 9.3 and Fedora core 3. It should be no problem for Seagull to
work on other Linux platforms by compiling Seagull from the sources.

• HPUX 11i (PA-RISC and IA64): supported.
• HPUX 11.23 (PA-RISC and IA64): supported.
• Windows/cygwin: supported, only for IP-based protocols (for functional testing and limited load

testing).

Note:
For TCAP support in Seagull, HP OpenCall SS7 (http://www.hp.com/go/opencall/) is a pre-requisite, so an HP OpenCall SS7 compliant platform
must be used.

1.2. Installing Octave

Seagull relies on "Octave (http://www.octave.org/) " to analyze detailed statistics and to provide plotting
capability.

Note:
Installing Octave is optional (Seagull runs properly without it). Statistics can also be computed from within Excel, but there are many limitations
(mainly file size) by doing so.

There are 3 options to install Octave:

• If you installed your system using CD/DVDs: locate the Octave packages and install them.
• Download Octave for your distribution (using urpmi or apt tools).
• On a Windows PC, install "Cygwin (http://www.cygwin.com/) " and install Octave during Cygwin

installation.

1.3. Compiling Seagull from source code

If the binary package is not available on your platform or if you want to modify Seagull source code to add
you own features, you will need to compile Seagull from the source code.

Decompress the source code tarball:
gunzip seagull-x.y.z.tar.gz
tar -xvf seagull-x.y.z.tar

Seagull - Core

Page 4
Copyright © 2006 HP OpenCall Software All rights reserved.

http://www.hp.com/go/opencall/
http://www.octave.org/
http://www.cygwin.com/

This will create a directory called seagull. Go to this directory and edit "build.conf" file to add or remove
sections you want to include during compilation time. To compile seagull:
cd seagull
./build.ksh

Executables are located in bin/. Copy them in /usr/local/bin and you should be ready to go.

Note:
To compile Seagull from the source on CYGWIN, you need to install CYGWIN and the following packages: shell/pdksh (Public Domain KSH),
devel/gcc-g++, devel/make, devel/bison, devel/flex, vi

1.4. Installing Seagull

First, unzip and untar the Seagull archive file that corresponds to your platform:
seagull-[tool version]-[OS]-[OS release version].tar.gz

Then, use the package installer of your platform:

• HPUX 11i/11.23:
swinstall -s /full_path_to_the_depot/seagull-core-[tool version]-[OS]-[OS release
version]-[processor].depot
swinstall -s /full_path_to_the_depot/seagull-[protocol]-[tool version]-[OS]-[OS
release version]-[processor].depot

• Linux RedHat-new and Fedora core 3 install:
rpm -ivh seagull-core-[tool version]-[OS]-[OS release version]-[processor].rpm
rpm -ivh seagull-[protocol]-[tool version]-[OS]-[OS release version]-[processor].rpm

• Linux Debian:
dpkg -i seagull-core-[tool version]-[OS]-[OS release version]-[processor].deb
dpkg -i seagull-[protocol]-[tool version]-[OS]-[OS release version]-[processor].deb

• Cygwin: user auto-extractible executable under Windows.

Seagull - Core

Page 5
Copyright © 2006 HP OpenCall Software All rights reserved.

Once the installation is done, the following directories are available:

Note:
For versions older than 1.8.0.1 , please replace "opt" by "/usr/local/share"

• /opt/seagull/seagull/doc directory contains the documentation for all the protocols.
• /opt/seagull/[protocol]/doc directory contains protocol documentation.
• /opt/seagull/[protocol]/config directory contains the XML configuration files, as described in the

"Configuration files" section, and the dictionaries, as described in the "Protocol dictionaries" section.
• /opt/seagull/[protocol]/logs directory is empty. It is meant to contain execution log files.
• /opt/seagull/[protocol]/run directory contains examples of shell scripts to run the client and server to

execute your scenarios.
• /opt/seagull/[protocol]/scenario directory contains the example scenarios.

Note:
The files present in those directories are given as simple examples. It is highly recommended to not modify them, as they will be overwritten if you
upgrade Seagull. Instead, create your own environment by copying /opt/seagull/[protocol]/ directory tree to your home directory.

The installation also creates the following files in the bin directory:
/usr/local/bin/

seagull
computestat.ksh
plotstat.ksh
startoctave_plot.ksh
startoctave_stat.ksh
csvextract
csvsplit
[library-files].so

/usr/local/bin directory contains the binaries of Seagull. Make sure that this directory is in your user path by
typing
ocadmin@myhost:~$ type seagull
seagull is /usr/local/bin/seagull

If Seagull can't be found, type:
export PATH=$PATH:/usr/local/bin

1.5. Uninstalling Seagull

To remove Seagull from your system:

• On HPUX 11i/11.23, use swremove command.
• On Linux with rpm packager

• find the list of packages to remove:
rpm -aq | grep seagull

• Remove all the packages given by the previous command:
rpm -e package-name

• On cygwin, use the Windows uninstaller.

1.6. Upgrading Seagull

To upgrade from a previous version of Seagull:

Seagull - Core

Page 6
Copyright © 2006 HP OpenCall Software All rights reserved.

• On HPUX 11i/11.23, follow uninstall procedure and then install procedure.
• On Linux with rpm packager:

rpm -Uvh seagull-core-[tool version]-[OS]-[OS release version]-[processor].rpm
rpm -Uvh seagull-[protocol]-[tool version]-[OS]-[OS release version]-[processor].rpm

• On cygwin, follow the install procedure.

2. Using Seagull

2.1. Traffic profile

The traffic profile is the evolution over time of the number of scenario attempts per second (call rate). By
default, the traffic profile is constant, meaning that you set the rate at x, and it will remain x until you quit
Seagull. You can change the rate of scenario attempts interactively using the keyboard or using the remote
control interface.

A simple Perl script (ctrl.pl
(http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup)) is provided
with Seagull to demonstrate the capabilities of the remote control interface as well as providing a way to
create a repeatable traffic profile.

ctrl.pl (http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup) takes two
arguments: Seagull's remote control address (as specified on the controlled Seagull through "-ctrl IP:PORT"
command line option) and the traffic profile scenario to execute.

A sample scenario (scenario.txt) is also provided:
Comment 1
' Comment 2
SET RATE 20 CPS
WAIT 2S
DUMP
WAIT 2S
DUMP
SET RATE 40 CPS
WAIT 2S
DUMP
WAIT 2S
DUMP
RAMP 100 IN 30S
WAIT 10S
DUMP
WAIT 10S
DUMP
WAIT 10S
DUMP

This scenario sets the rate to 20 scenario attempts per second, waits 2 seconds (this is done at ctrl.pl level,
not at Seagull level), dumps the counters, waits another 2 seconds, dumps the counters again, sets the rate to
40 scenario attempts per second, and so on. It creates the following traffic profile:

Note:
ctrl.pl is an example of the remote control interface. If you modify ctrl.pl to add more features, we would appreciate that you post your findings back
to Seagull users mailing list (http://lists.sourceforge.net/lists/listinfo/gull-users) .

Seagull - Core

Page 7
Copyright © 2006 HP OpenCall Software All rights reserved.

http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup
http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup
http://lists.sourceforge.net/lists/listinfo/gull-users

2.2. Controlling Seagull

Seagull can be controlled in three ways:

• Interactively: using the keyboard attached to the terminal running Seagull
• Remotely: using the http server embedded in Seagull
• Posix signals: using Posix signals to stop the traffic

2.2.1. Keyboard control

Seagull can be controlled interactively using the keyboard. As there are many keys available to control
Seagull, you can press "h" at any time to see the keys available and their function:

|---|
Key: Description
+ : Increase call rate by call-rate-scale (default 1)
- : Decrease call rate by call-rate-scale (default 1)
c : Command mode (format : set var value)
set call-rate 50 : call-rate become 50 c/s
set call-rate-scale 5 : use ± key to increase/decrease call-rate by 5
q : Tool exit (forced when pressed two times)
p : Pause/Restart traffic

|
|b : Burst traffic (after pause) |
|f : Force init scenario (switch to traffic) |
|d : Reset cumulative counters for each stat set in config file |
|a : activate/deactivate: percentage in Response time screen |
|1 : Traffic screen |
|2 : Response time screen |
|h : Help screen |
|3 : Protocol octcap-itu screen(s) |
|A : Scenario traffic stats |
|B : Scenario default 0 stats |
|C : Scenario default 1 stats |
|D : Scenario default 2 stats |
|E : Scenario default 3 stats |
|--- Select a key ----------------------- Next screen : Press the same key ---|

Notice that all the lines after "h : Help screen" are optional. In our example they appear because the protocol
statistics (see line "3 : Protocol octcap-itu screen(s)") and the scenario statistics (lines from A to E) have
been turned on.

Note:
In case there is not enough space on the screen to display all the optional lines, you have to press the h key again to display the end of the help list.

Description of the keyboard controls:

Key Short description Long description

+ Increase the call rate This key allows to increase the
call rate from the call-rate-scale
value. The default value of the
call-rate-scale is 1.
Usable only in client mode. It
has no effect in server mode.

Seagull - Core

Page 8
Copyright © 2006 HP OpenCall Software All rights reserved.

- Decrease the call rate This key allows to decrease the
call rate from the call-rate-scale
value. The default value of the
call-rate-scale is 1.
Usable only in client mode. It
has no effect in server mode.

c Command This key allows to change any
parameter in the configuration
during traffic.
For example:
* press 'c', then 'set call-rate 10'
to change the value of the call
rate to 10.
* press 'c', then 'set
call-rate-scale 5' to change the
value of the call-rate-scale to 5.
Usable only in client mode. It
has no effect in server mode.

q Stop the traffic and quit the tool In server mode, Seagull does
not accept any new incoming
call. Once all ongoing calls are
finished, the tool exits.
In client mode, Seagull does
not place any new call. Once all
ongoing calls are finished,
Seagull exits
Pressing the q/ctrl-C key a
second time forces Seagull to
quit, even if all ongoing calls
are not finished.

p Pause/Restart the traffic In server mode, Seagull does
not accept any new incoming
call. Current calls continue.
In client mode, Seagull does
not place any new call.
Ongoing calls are processed
normally.
By pressing p key a second
time, seagull will restart traffic.
In server mode, Seagull
accepts again new incoming
call.
In client mode, Seagull
smoothly restarts the traffic, to
go back to the required call
rate.

b Burst traffic (only available in
client mode)

Once the traffic is paused,
restart traffic.
In client mode, Seagull will try
to create all missed calls during
the pause (for example, for a
5s pause with a 10c/s call rate,
seagull will try to start
5*10=500 calls when the "b"
key is pressed).

Seagull - Core

Page 9
Copyright © 2006 HP OpenCall Software All rights reserved.

f Force without init This key allows to jump directly
to the "traffic" section of a
scenario, without waiting for the
"init" section to be completed.

d Reset cumulative counters for
each statistics set in config file

Reset the counters. This option
is available only if log-stat,
log-protocol, display-protocol or
display-scenario statistics
options are set in the
configuration file.

1 Display the main statistics
screen

Display the main screen with
the general statistics. Press "1"
again to display the statistics
per scenario.

2 Display the response time
screen

The second column gives the
percentage of the calls for each
response time range, if the
percentages are activated (see
'a' key). This screen is relevant
only if you set the proper
options in the configuration files
and if you set the start and stop
of the timer in the scenario (see
the statistics chapter).

a Activate/deactivate the
percentage computation

This key activates or
deactivates the computation of
the percentages of the
response times screen, only if
the log-stat is set in the
configuration file and if you set
the start and stop of the timer in
the scenario (see the statistics
chapter).

h Show the help screen Press on h to show the help
screen.
If you see "Next screen: press
the same key", press h again to
see the second help screen.

Numbers above or equal to 3 Show protocol statistics screen If you asked for statistics at the
protocol level, you can reach
the corresponding screen by
pressing the corresponding
number.
3 is for the first protocol, 4 for
the second one, 5 for the third
one, and so on for all the
protocols used.
The possible values go from 3
to 0, so there are a maximum
of 8 protocol statistics screens.

Uppercase letters (starting with
A)

Show scenario section
statistics

If you asked for statistics at the
scenario level, you can reach
the corresponding screen by

Seagull - Core

Page 10
Copyright © 2006 HP OpenCall Software All rights reserved.

pressing the corresponding
letter.
A is for the first section in the
scenario, B for the second one,
C for the third one, and so on
for all the sections used in your
scenario.
The number of scenario section
statistics screens is limited to
26.

Table 1: Control keys

2.2.2. Remote control

2.2.2.1. Description

Seagull can be remotely controlled through a remote connection using the HTML protocol and a dictionary
that is provided at run time (-ctrldicopath command line option), the default being
/opt/seagull/config/remote-ctrl.xml.(/usr/local/share/seagull/config/remote-ctrl.xml for versions before
1.8.0.1)
This feature is activated with a run time option : -ctrl address:port ("address:port" : the address and the port
on which seagull listens for remote control commands)

Using HTTP makes it very easy to remotely control Seagull, either directly from a browser or from higher
level languages like Perl or Python.

In particular, this allows to:

• Control a cluster of Seagull instances (hosted on one or several systems)
• Control the traffic profile over time (see the example with ctrl.pl Perl script)
• Automate benchmark test sessions
• Easily create a Graphical User Interface for Seagull control and monitoring (through http, AJAX, Eclipse

plugin, ...)
• Create real time graphs with Seagull statistics (dump command)

The following configurations are possible:

2.2.2.2. Control commands

The following remote control commands are implemented:

• Dump: to dump the statistics counters. This is done by sending an HTTP "GET" with URI:
http://x.y.z.t:p/seagull/counters/all

• Set rate: to set the rate of scenario attempts per second. This is done by sending an HTTP "PUT" with
URI:
http://x.y.z.t:p/seagull/command/rate?value=n

• Ramp: to linearly increase or decrease the rate of scenario attempts per second, from the current value to
a target value in a number of seconds.
This is done by sending an HTTP "PUT" with URI:
http://x.y.z.t:p/seagull/command/ramp?value=n&duration=d

• Stop: to ask seagull to quit . This is done by sending an HTTP "PUT" with URI:
http://x.y.z.t:p/seagull/command/stop

• Pause: to ask seagull to pause/restart the traffic. This is done by sending an HTTP "PUT" with URI:
http://x.y.z.t:p/seagull/command/pause

• Burst: to ask seagull to make a burst when the traffic is paused seagull will try to create all missed calls

Seagull - Core

Page 11
Copyright © 2006 HP OpenCall Software All rights reserved.

during the pause (only for client).
This is done by sending an HTTP "PUT" with URI:
http://x.y.z.t:p/seagull/command/burst

2.2.3. Posix signal control

It is also possible to stop the traffic using POSIX signals. This is especially useful when running Seagull in
background mode (-bg option, see the command line help).

kill -SIGUSR1 pid has the same effect as the 'q' key. You can force the traffic to stop by issuing a
second kill -SIGUSR1 pid.

2.3. Navigating through the screens

Here is the screen that you see when you launch Seagull:
|------------------------+---------------------------+-------------------------|
| Start/Current Time | 2005-12-14 10:04:11 | 2005-12-14 10:06:53 |
|------------------------+---------------------------+-------------------------|
| Counter Name | Periodic value | Cumulative value |
|------------------------+---------------------------+-------------------------|
| Elapsed Time | 00:00:01:008 | 00:02:41:596 |
| Call rate (/s) | 75.397 | 41.505 |
|------------------------+---------------------------+-------------------------|
Incoming calls	76	6707
Outgoing calls	0	0
Msg Recv/s	149.802	82.985
Msg Sent/s	149.802	82.979
Unexpected msg	0	0
Current calls	3	0.019
------------------------+---------------------------+-------------------------		
Successful calls	75	6704
Failed calls	0	0
Refused calls	0	0
Aborted calls	0	0
Timeout calls	0	0
------------------------+---------------------------+-------------------------		
Last Info	Incomming traffic	
Last Error	No error	
--- Next screen : Press key 1 ----------------------- [h]: Display help ------		

Note:
In order to see the screens clearly, you are advised to launch Seagull in a terminal with at least the following geometry: 25 lines and 80 columns.

At the bottom left, there is an invitation to press 1. Pressing the 1 key will get you to the following screen,
that displays the number of successfull occurences of each types of scenarios (init, traffic, default and abort):

|------------------------+---------------------------+-------------------------|
Success init calls	0	0
Success traffic calls	76	13125
Success default calls	0	1
Success abort calls	0	0
------------------------+---------------------------+-------------------------		

Seagull - Core

Page 12
Copyright © 2006 HP OpenCall Software All rights reserved.

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|--- Next screen : Press key 1 ----------------------- [h]: Display help ------|

Press 1 again to come back to the first screen.

Note:
All the screens in Seagull follow the same logic: if all the information cannot be displayed on one screen you'll have to press the same key once again
to display the rest of the information.

3. Concepts and definitions

3.1. Scenario

A scenario is what gets executed by Seagull. Composed of multiple sections, each section is a sequence of
commands, described in XML. Within a scenario section, <send> and <receive> commands are used to send
and receive protocol messages.

3.2. Session-Id

The Session-Id is a generic concept in Seagull. Under classical usage, session-ids are not seen by the user. It
can become handy to understand what a session-id is.

A Session-Id maps to one or several protocol fields. How the mapping is done is indicated in the dictionary.
For example, in Diameter, the session-id maps to Diameter's Session-Id avp. In H248, session-id maps to
H.248's transaction-id.

A session-id is valid for a channel. Thus, a scenario that makes use of multiple channels will have multiple
session-ids.

Let's take the example of a scenario which uses one channel. The scenario is the following:

<send channel="trans-ip-v4">
<action>
<!-- For each new call,

increment the session-ID counter -->
<inc-counter

name="HbH-counter"> </inc-counter>
<inc-counter

name="EtE-counter"> </inc-counter>
<inc-counter

name="session-counter">
</inc-counter>

<set-value name="HbH-id"
format="$(HbH-counter)"></set-value>

<set-value name="EtE-id"
format="$(EtE-counter)"></set-value>

<set-value name="Session-Id"
format=".;1096298391;$(session-counter)"></set-value>

</action>
<command name="SAR">

When sending the message, Seagull
initializes the session-id with the
value of "Session-Id" AVP,
as indicated in Diameter's
dictionary

Seagull - Core

Page 13
Copyright © 2006 HP OpenCall Software All rights reserved.

<avp name="Session-Id"
value="value_is_replaced"> </avp>

<avp
name="Vendor-Specific-Application-Id">

<avp name="Vendor-Id"
value="11"></avp>

<avp
name="Auth-Application-Id"
value="167772151"></avp>

<avp
name="Acct-Application-Id"
value="0"></avp>

</avp>
<avp name="Auth-Session-State"

value="1"> </avp>
<avp name="Origin-Host"

value="seagull"> </avp>
<avp name="Origin-Realm"

value="ims.hpintelco.org"> </avp>
<avp name="Destination-Realm"

value="ims.hpintelco.org"> </avp>
<avp name="Server-Name"

value="seagull"> </avp>
<avp

name="Server-Assignment-Type"
value="3"> </avp>

<avp
name="User-Data-Request-Type"
value="0"> </avp>

<avp name="Public-Identity"
value="sip:olivierj@ims.hpintelco.org">
</avp>

<avp name="Destination-Host"
value="hss.ims.hpintelco.org">
</avp>

</command>
<action>
<start-timer></start-timer>

</action>
</send>

<receive channel="trans-ip-v4">
<action>
<stop-timer></stop-timer>

</action>
<command name="SAA">
</command>

</receive>

When receiving a message, Seagull
tries to find the
session-id in the list of its known
session-ids. If
the parameter corresponding to the
session-id (as
indicated in the dictionary) is not
found, then
Seagull will look at parameters
indicated by
"out-of-session-id" parameters in
the dictionary.

In some cases, the session-id value is not in a unique field and may need to be found in other fields. To
resolve this, multiple out-of-session-id fields can be defined in the dictionary. If a message is received with
no session-id field or with an unknow value in the session-id field, then seagull looks for the first
out-of-session-id field if defined. If this first out-of-session-id field is not present or its value is unknown,
seagull looks for the second out-of-session-id field if defined and so on ... The most probable
out-of-session-id field must be placed at the top of the list of out-of-session-id fields in the dictionary to
optimize the execution.

When a message is received and cannot be matched to a known session-id value (whether this value was
related to the session-id field or one of the defined out-of-session-id fields), then it is treated as a "new
(incoming) call".

3.3. Transport protocols and channels

Seagull - Core

Page 14
Copyright © 2006 HP OpenCall Software All rights reserved.

Seagull messages are sent/received using a transport protocol. Several transport protocols can be used: TCP,
UDP or SCTP, all three over IPv4 or IPv6. In addition, HP OpenCall SS7 (http://www.hp.com/go/opencall/)
can be used to provide TCAP over SS7 transport. See TCAP (octcap.html) documentation for more details.

You first have to define the transport to use. This is done in the generic configuration file (see example
below). Then you can open channels for the transport that you have defined. You can open one or several
channels. Each channel can be on the same or on different transports, and can use the same or a different
protocol.

A channel makes the link between a transport and a protocol.

Note:
A channel defined as server has to be opened as the FIRST channel. To open more than one channel as server, the "correlation feature" must be used.

Transport and channels are defined in the generic configuration file

Here are some examples:

• Example using TCP over IPv4:

<define entity="transport"
name="trans-ip-v4"
file="libtrans_ip.so"
create_function="create_cipio_instance"
delete_function="delete_cipio_instance"
init-args="type=tcp">

</define>

<define entity="channel"
name="channel-ip-1"
protocol="Protocol"
transport="trans-ip-v4"
open-args="mode=client;dest=192.168.0.13:3868">

</define>
• Example using TCP over IPv6:

<define entity="transport"
name="trans-ip-v6"
file="libtrans_ip.so"
create_function="create_cipio_instance"
delete_function="delete_cipio_instance"
init-args="type=tcp">

</define>

<define entity="channel"
name="channel-ip-1"
protocol="Protocol"
transport="trans-ip-v6"
open-args="mode=client;dest=[fec0::5:20f:20ff:fefe:ea51]:3868">

</define>
• Example using TLS over IPv4:

<define entity="transport"
name="trans-ip-tls"
file="libtrans_iptls.so"
create_function="create_ciptlsio_instance"
delete_function="delete_ciptlsio_instance"
init-args="method=SSLv23;cert_chain_file=xxx;private_key_file=yyy;passwd=zzz">

</define>

Seagull - Core

Page 15
Copyright © 2006 HP OpenCall Software All rights reserved.

http://www.hp.com/go/opencall/
octcap.html

<define entity="channel"
name="channel-tls"
protocol="Protocol"
transport="trans-ip-tls"
open-args="mode=client;dest=192.168.0.10:3868">

</define>
• Example using SCTP over TCP:

<define entity="transport"
name="trans_sctp"
file="libtrans_extsctp.so"
create_function="create_cipsctpio_instance"
delete_function="delete_cipsctpio_instance"
init-args="type=tcp">

</define>

<define entity="channel"
name="channel-sctp"
protocol="Protocol"
transport="trans-sctp"
open-args="mode=client;dest=127.0.0.1:7000">

</define>

For more details, see "Transport Configuration".

3.4. SCTP transport

Seagull supports SCTP transport with SCTP library in version 1.5 and SCTP Socket api library in version
1.9.0 (refer to www.sctp.de (http://www.sctp.de/sctp-download.html)).

Warning:
Seagull only supports SCTP over TCP transport on linux platform.

Warning:
"Root" privileges are something needed to execute Seagull with SCTP transport.

3.5. Multi-channels

Seagull supports several channels in one single scenario. This means that you can create a scenario that for
example sends a message on channel 1, receives the answer on channel 1, then sends a message on channel
2 and receives the answer on channel 2.

Warning:
Following the session-id principles, multi-channel scenarios can become complex. For example, to define a scenario where the first command is a
message sent on channel-1 and the second command is a message received on channel-2, the "correlation feature" must be used.

3.6. Traffic Models

Seagull generates traffic using different model types:

Uniform : for each interval, seagull tries to reach the expected call rate, regardless of what
happened during the last interval. With this value, the max-receive and max-send options are
automatically set. It is not recommended for a low call rate. To reach a high call rate, it is

Seagull - Core

Page 16
Copyright © 2006 HP OpenCall Software All rights reserved.

http://www.sctp.de/sctp-download.html

necessary to increase the call-rate slowly (with the keyboard control or the remote control) to avoid
a burst phenomenon.
Example of traffic generated for:
1 call/s

10 calls/s

100 calls/s

Best-effort: seagull tries to maintain the expected average call rate by adjusting the instantaneous
call rate using the rates reached during the previous intervals
Example of traffic generated for:
1 call/s

Seagull - Core

Page 17
Copyright © 2006 HP OpenCall Software All rights reserved.

10 calls/s

100 calls/s

Poisson: the real call rate varies around the expected call rate according to the Poisson
distribution
Example of traffic generated for:
1 call/s

10 calls/s

Seagull - Core

Page 18
Copyright © 2006 HP OpenCall Software All rights reserved.

100 calls/s

This parameter is set in the configuration file of the client.

For more details, see "Generic configuration".

4. Seagull scenario

4.1. Scenario sections

A scenario describes the messages exchanged during traffic and their parameters. It contains several
sections:
<scenario>
<counter>
</counter>

<correlation>
</correlation>

<init>
</init>

<default>
</default>

<abort>
</abort>

<traffic>
</traffic>

</scenario>

4.1.1. Counter section

Seagull - Core

Page 19
Copyright © 2006 HP OpenCall Software All rights reserved.

The counter section contains a list of counters that are available during the traffic. This is useful, for
example, to handle session-ids (the name varies depending on the protocol) which are used to identify calls
in Seagull.

For example, the following code declares 3 counters: HbH-counter (initial value: 1000), EtE-counter (initial
value: 2000) and session-counter (initial value: 0).
<counter>
<counterdef name="HbH-counter" init="1000"> </counterdef>
<counterdef name="EtE-counter" init="2000"> </counterdef>
<counterdef name="session-counter" init="0"> </counterdef>

</counter>

Those counters can then be used in the scenario using the inc-counter and set-value scenario actions (see
scenario actions section).

4.1.2. Correlation section

The correlation section is used to define rules to associate several session-ids to a single call. It supports
scenario that use one or multiple channels.

Refer to the "Correlation" section for further details.

4.1.3. Init section

The init section is executed once, at the time the connection is setup (before any traffic). This can be in a
server type or in a client type scenario.

This section can be used as a pre-amble to the traffic (like CER/CEA exchange for Diameter protocol).

The list of scenario commands that can be included in this section is described in the scenario command
section.

4.1.4. Default section

The default section is executed when an unexpected message (not listed in the traffic section) is received.
This can be a server type or a client type scenario.

There can be as many default sections as needed. Seagull tries to match the received message against the
first message of the default section.

The default section is generally used to create defensive scenarios, so that Seagull can react when stress
situations from the system under test are encountered.

By default, Seagull counts calls using a "default" scenario section as successful calls. You can choose to
count them as failed calls or simply ignore them. To do so, you need to add a "behaviour" attribute to the
default section. Values of the behaviour attribute can be either "ignore" or "failed". Example:
<default behaviour="ignore">
<receive channel="channel-1">
<primitive name="SCCP_USER_STATUS">
</primitive>

</receive>
</default>

The list of scenario commands that can be included in this section is described in the scenario command
section.

Seagull - Core

Page 20
Copyright © 2006 HP OpenCall Software All rights reserved.

4.1.5. Abort section

The abort section is executed to finish a call when something wrong happened. The first command has to be
a <send>

The list of scenario commands that can be included in this section is described in the scenario command
section.

4.1.6. Traffic section

The traffic section is the main traffic. This can be in a server type or in a client type scenario.

The list of scenario commands that can be included in this section is described in the scenario command
section.

Warning:
When "init" and "traffic" are both present, Seagull only supports same nature sections:
if the "init" section starts with a "send" command, the "traffic" section must start with a "send" command,
if the "init" section starts with a "receive" command, the "traffic" section must start with a "receive" command.

4.2. Actions in scenarios

The <send> and <receive> scenario commands can include <action> and <message> sections.

Note:
"message" depends on the protocol. This is "command" for Diameter, "primitive" for TCAP, ...

The <action> section can be placed before and/or after the <message> section.

Actions placed before the message (called "pre-actions") are executed just before the message is actually
sent or received. Actions placed after the message (called "post-actions") are executed just after the
message is sent or received.

There are many actions available. To name a few, you can increment call variables, start or stop a timer,
store a parameter from an incoming message or re-inject it in an outgoing message, do controls on the
message or inject values from an external data file. Click there to see the complete list.
<send>
<action> <!-- Pre-action -->
</action>
<message> <!-- Message -->
</message>
<action> <!-- Post-action -->
</action>

</send>

Actions that can be placed before a message are actions to increment a counter before sending the message.
Example:

<send channel="channel-1">
<action>

<inc-counter name="session-counter"></inc-counter>
<set-value name="user-id-1" format="$(session-counter)"></set-value>

</action>
<message name="FOO_BAR">
</message>

Seagull - Core

Page 21
Copyright © 2006 HP OpenCall Software All rights reserved.

</send>

Actions that can be placed after a message are actions to store parameter values after the message has been
received. Example:

<receive channel="channel-1">
<message name="FOO_BAR">
</message>
<action>
<store name="SESSION-ID" entity="user-id-1"></store>

</action>
</receive>

The list of possible actions is available in the reference section. All actions can be pre- or post-actions.

4.3. Call variables

In order to have dynamical scenarios, Seagull has "call variables". Those variables are local to each call
(each instance of the scenario) except for the counters which are global to the seagull instance.

Here is what is possible to do with call variables:

• Set the value of a protocol entity by using the set-value action.
• Increment a call variable within a call by using the inc-var action.
• Retrieve the value of a protocol entity in a call variable by using the store action.
• Put the value of a call variable in a protocol entity by using the restore action. In particular, this is how

Diameter Hop-by-hop Id and End-To-End Id can be handled.

4.4. Counters

In order to have unique identifier for a seagull instance, Seagull has "counters". Those counters are as global
variables to the seagull instance.

Here is what is possible to do with counters:

• Set the value of a protocol entity by using the set-value action.
• Increment a call counter by using the inc-counter action.
• Put the value of a call variable in a protocol entity by using the restore action.

4.5. Store and restore of protocol parameters

Some of the most useful actions are the store and restore actions. In the following example, we will explain
how to use the store and restore actions for 3 protocols: SIP (text), Diameter (binary) and TCAP (api).

Note:
A store action is generally executed as a post-action, while a restore action is generally executed as a pre-action.

• SIP (text). There are several ways to use the store action for a text protocol:
• You want the entire value of a protocol field: in this case, the store action can simply be used as:

<store name="MYVAR" entity="via"></store>
The variable "MYVAR" contains the value of the Via header field.
Similarly, the Via header value can be restored using:
<restore name="MYVAR" entity="via"></restore>
which will put the value of "MYVAR" in the Via header field (as declared in the dictionary).

• You want part of the value of a protocol field, using a regular expression: in this case, the store
action can include a regular expression:

Seagull - Core

Page 22
Copyright © 2006 HP OpenCall Software All rights reserved.

<store name="MYVAR" entity="via">
<regexp name="viabranch"
expr="[Vv][Ii][Aa][]*:[]SIP/2.0/(UDP|TCP)

([A-Za-z0-9.:_-]*)(;branch=(.*))*"
nbexpr="5"
subexpr="4">

</regexp></store>
The variable "MYVAR" contains the value of the branch field in the SIP via header.
Similarly, the Via branch value can be restored using:
<restore name="MYVAR" entity="via-branch"></restore>
which will put the value of "MYVAR" in the via-branch header field (it will need to be declared in
the dictionary).

• Diameter (binary): in a binary protocol, store and restore actions can be done using directly the fields
declared in the XML dictionary, like this:
<store name="MYVAR" entity="via"></store>
and then:
<restore name="MYVAR" entity="via"></restore>

Note:
store and restore actions on Diameter Grouped AVPs are supported by version 1.8.0 onwards

• OCTCAP (API): to store and restore fields, you must identify which field you want to store and restore
like this:
<store name="MYVAR" entity="TC_INVOKE" sub-entity="operation-data"

instance="InitialDP-data" begin="5" end="10"></store>
Note that begin and end attributes are used to extract part of the operation-data (like correlation-id or
called party number). Same for the restore:
<restore name="MYVAR" entity="TC_CONTINUE" sub-entity="operation-data"

instance="ApplyCharging-data" begin="9" end="14"></restore>
This will set the value of the operation-data field (starting octet 9, ending octet 14) in the
TC_CONTINUE named "ApplyCharging-data" with the content of "MYVAR".

Warning:
As init section and traffic section are hold as different calls, do not store a value in the init section to restore it in the traffic section.

Warning:
The "store" action on an unavailable field will make the call to be marked as failed.

5. Message and parameters control

Even if Seagull is aimed at traffic, load and stress testing, it is possible to check messages and parameters
during traffic.

Note:
The more controls you put, the less traffic Seagull can handle.

Several levels of control are available and described in the following sections.

5.1. Enabling and disabling controls

Controls can be enabled at two different levels:

Seagull - Core

Page 23
Copyright © 2006 HP OpenCall Software All rights reserved.

• Globally, in the generic configuration file.
• Globally, using -msgcheck parameter in the command line.
• Per message, in the scenario file, in a post-action section of a message:

<check-presence name="[FIELD_NAME]" behaviour="error"></check-presence>

5.2. Behaviour when a control fails

You can specify the behaviour of Seagull for the different controls. This behaviour can be defined at the
control level (see examples in the following chapters) or globally. The rest of this section presents the ways
to define a global behaviour.

Define in the XML configuration file "Warning" as the global behaviour when a control fails:
<define entity="traffic-param"
name="msg-check-behaviour"
value="W">

</define>

Define in the XML configuration file "Error and abort" as the global behaviour when a control fails:
<define entity="traffic-param"
name="msg-check-behaviour"
value="E">

</define>

The global behaviour is applied for all controls that do not have their behaviour attribute defined in the
scenario.

If the control is OK, the scenario goes on. If the control fails, the behaviour is:

• Log a warning and continue the call
• Log an error and abort the call

Seagull - Core

Page 24
Copyright © 2006 HP OpenCall Software All rights reserved.

5.3. Presence check

The goal of this control is to check for the presence of parameters as described in the scenario. There are two
types of presence check:

• Presence: Seagull checks that at least the parameters listed in the scenario are present in the received
message. If additional parameters are present, the call is still considered OK. But if any expected
parameter is missing, then the control fails.

• Additional: Seagull checks that all and only the parameters listed in the scenario are present in the
received message. If additional parameters are present, the call is considered failed. If any expected
parameter is missing, then the specified behaviour is applied.

The type of presence check is set in the generic configuration file:

• To enable "Presence" check in the generic configuration file:
<define entity="traffic-param"

name="msg-check-level"
value="P">

</define>
• To enable "Additional" check in the generic configuration file:

<define entity="traffic-param"
name="msg-check-level"
value="A">

</define>

Example for Diameter protocol:

<receive channel="channel-1">
<command name="SAA">
</command>
<action>
<check-presence name="name_of_avp_to_check" behaviour="error"></check-presence>

</action>
</receive>

Note:
"command" is specific to Diameter. It should be replaced by the appropriate keyword depending on the protocol

Warning:
The check must be defined in the post-action section of the <receive> scenario command.

5.4. Parameter value check

Note:
"branch_on" feature is only present for seagull version 1.8.1, onwards

Seagull can also perform controls on the value of the fields (of the header or the body) of a message.

Those controls are defined in the scenarios.

Note:
In general, the control is done against the value indicated in the scenario.

Seagull - Core

Page 25
Copyright © 2006 HP OpenCall Software All rights reserved.

Examples (as part of the receive section of a message in the scenario):

• Check the value of the field specified with "name" in the received message.
<!-- Diameter example-->
<check-value name="Vendor-Specific-Application-Id" behaviour="error">
</check-value>

• Check the value of the sub-entity of the field specified with "name=" and with "instance=" in the
received message
<!-- TCAP example-->
<check-value name="TC_INVOKE" sub-entity="operation-code" behaviour="error"

instance="Client-1-data">
</check-value>

• Check the value of a header field: you check that the field (specified with "name") in the header of the
message has the expected value, which in this specific case of TCAP is defined in the configuration file.
<!-- TCAP example-->
<check-value name="d-address-pc" behaviour="error">
</check-value>

Examples for check-value usage for branching:

• For branching, only parameters required are branch_on, look_ahead or look_back; behaviour is also set
as error, to maintain check-value's structure. "name" is not needed for branching,so not maintained as
mandatory param for check-value. For a jump in the scenario,check-value has to be present as a post
action, specifying that in case of an unexpected message received, what should the scenario do. In case
the unexpected message matches the value for branch_on, it would either jump as many sections in
scenario,ahead or backwards, as specified by look_ahead, or look_back params in the traffic section.
Apart from handling unexpected messages, this feature can be used to handle optional messages. This
feature has limitations however, intended to be fixed in later releases. One limitation being that, for the
unexpected message received,no other actions apart from jump, will be executed. An example involving
sip protocol is below:
<!-- SIP example-->
<check-value behaviour="error" branch_on="100" look_ahead="2">
</check-value>

5.5. Message order check

Note:
Message order check is implemented for TCAP protocol only.

Seagull can also perform controls on the order in which the parameters are received in the messages.

Those controls are defined in the scenarios.

In the case of TCAP, the order of reception of the components (eg TC_INVOKE) inside primitives (eg
TC_BEGIN) can be checked.

Example: check that the parameter specified with "name" is received in second position.
<!-- TCAP example-->
<check-order name="TC_INVOKE" behaviour="error" position="1">
</check-order>

Seagull - Core

Page 26
Copyright © 2006 HP OpenCall Software All rights reserved.

Note:
The position starts at zero, so position=1 checks for the second position.

Note:
If the specified position is greater than the number of received components, then an error is logged (as defined with "behaviour") and the call is
aborted.

6. External data management

6.1. Description

Seagull allows to change the content of the messages before sending them, according to an external data file
(CSV format). For each new scenario that Seagull executes, a new line is read from the external data file.
This line contains the values of one or several fields which are used to change the content of a sent message
on a per scenario basis. Lines can be read in sequence or randomly.

For example, this feature allows to provision a list of users or subscribers that are used during Seagull's
traffic.

To use this feature, you need to specify "external-data-file" (file to read from) and "external-data-select"
(how to read the file) parameters in the configuration file:
<define entity="traffic-param"

name="external-data-file"
value="FULL_PATH/EXTERNAL_FILE.csv">

</define>

<define entity="traffic-param"
name="external-data-select"
value="sequential">

</define>

The value of the "external-data-select" parameter can be "random" or "sequential". In the first case, the
specific content for a message is taken randomly from the external data file. In the second case, the specific
content for a message is taken in a sequential order (the first line of the external data file for the first call, the
second line for the second call, etc.).

Here is an example of external data file:
"string";"string";"number";
FIELD 0 FIELD 1 FIELD 2
"0472826017" ; "0x214365870921" ; "10" ;
"0472826027" ; "0x214365870931" ; "12" ;
"0472826037" ; "0x214365870941" ; "14" ;
"0472826047" ; "0x214365870951" ; "16" ;
"0472826057" ; "0x214365870961" ; "18" ;
"0472826067" ; "0x214365870971" ; "20" ;
"0472826077" ; "0x214365870981" ; "22" ;

Notice that the comments can be prefixed by # or // and that string values can be in ASCII (for example:
"10" translates into 0x3130) or hexadecimal (for example: "0xA2") format.

The first line with characters and that does start by the comment sign is the line that defines the data types
contained in the file. This line is mandatory. The types must belong to the basic types of Seagull: string,
number, signed, number64 or signed64.

Seagull - Core

Page 27
Copyright © 2006 HP OpenCall Software All rights reserved.

On each line of data, you can access a field (column) with its index: the first data on the line is field(0), the
second one is field(1), and so on.

This index is used in the scenario to define which data field in the external file is used to fill the specified
field ("entity") of the message to be sent.

The external data can also be used to fill a defined part of a field. In order to do so, the position in the buffer
that represents the field to fill where to start to inject the data ("begin" parameter) and the position where to
stop to inject the data ("end" parameter) need to be defined. When using the "begin" and "end" parameters,
be careful that the count starts at zero for the first octet. Here is an example from a client scenario:
<restore-from-external field="1" entity="FIELD_NAME"

begin="1" end="3">
</restore-from-external>

In this example, the data (2 octets) is injected starting at the second octet (0 is the first octet, so 1 is the
second octet). Two bytes of data are injected at the second octet and at the third octet.

The field FIELD_NAME must exist in the message to be sent, as defined in the dictionary. Its value in the
current message before restore-from-external is executed is changed to the data of the second column
(second because field="1").

Note:
When the specified size (difference between "begin" and "end" values) is larger than the injected data, then the data is injected in its full length from
the "begin" position and a warning is logged.

Note:
When the destination buffer is too short to reach the "begin" position (e.g. buffer with 2 numbers and "begin=5"), zeros are added to the destination
buffer so it reaches a size big enough to enable the injection of the buffer at the "begin" position (example: insert "11" at position 5 in buffer "22", the
buffer becames "2200011"). A warning is logged.

6.2. Example

In this example, TCAP's operation-data with an initial value of
"0x3016a00e820c48656c6c6f2c20776f726c64810100820100" will be altered from octet 5 to octet 11 (first
octet is 0) so that the values will be:

• 0x3016a00e822143658709212c20776f726c64810100820100 for 1st scenario execution
• 0x3016a00e822143658709312c20776f726c64810100820100 for 2nd scenario execution
• 0x3016a00e822143658709412c20776f726c64810100820100 for 3rd scenario execution
• 0x3016a00e822143658709512c20776f726c64810100820100 for 4th scenario execution
• ...

Seagull - Core

Page 28
Copyright © 2006 HP OpenCall Software All rights reserved.

7. Authentication

Authentication has been introduced in Seagull. Digest/MD5 and Digest/AKA are both supported.
To use it, an "external method" must be defined in the dictionary (refer to "external-method") and the
method must be defined in a set-value action for the field to be encoded (refer to "set-value").
See SIP authentication (sip.html#sip_authentication) or Radius authentication
(radius.html#radius_authentication) for further details based on examples.

Seagull - Core

Page 29
Copyright © 2006 HP OpenCall Software All rights reserved.

sip.html#sip_authentication
radius.html#radius_authentication

8. Statistics

Statistics is an important part of a performance test tool. Seagull provides three different sets of statistics:
global statistics, response time statistics, protocol and scenario statistics.

Raw statistics data is saved using CSV (http://en.wikipedia.org/wiki/Comma-separated_values) file format.
This makes it easy to import the file in specialized applications, like Octave (http://www.octave.org) or
Microsoft Excel (http://en.wikipedia.org/wiki/Microsoft_Excel) to analyse the results and create graphs out
of the results.

A new line of statistics is dumped for every statistics period, allowing to follow the statistics over time.

8.1. Global statistics

Global statistics are used to get global informations on the traffic. See config file reference / log-stat-*
parameters to activate those statistics.

Those statistics have many counters. Here is the list. Counters can have a (P) or (C) appended to their name,
meaning that the values are (C)umulative (from the beginning of the traffic) or (P)eriodic (for the statistics
period, as specified by the log-stat-period traffic-param).

• StartTime: time when the traffic started
• LastResetTime: last time when periodic counters have been reset
• CurrentTime: current time
• ElapsedTime: time elapsed since StartTime (if C) or LastResetTime (if P)
• Rate: number of new calls per second
• IncomingCall: number of incoming calls
• OutgoingCall: number of outgoing calls
• MsgRecvPerS: number of messages received per second
• MsgSendPerS: number of messages sent per second
• UnexpectedMsg: number of unexpected messages
• CurrentCall: number of currently opened calls
• InitSuccessfulCall: number of successful init scenarios
• TrafficSuccessfulCall: number of successful traffic scenarios
• DefaultSuccessfulCall: number of successful default scenarios
• AbortSuccessfulCall: number of successful abort scenarios
• FailedCall: number of failed calls
• FailedRefused: number of failed calls because they were refused
• FailedAborted: number of failed calls because they were aborted
• FailedTimeout: number of failed calls because they timed out

If actions "start-timer" and "stop-timer" exist in the scenario, the following counter are updated :

• ResponseTime: average response time for the period (done in (P)eriotic and (C)umulative mode
simultaneous)

• ResponseTimeRepartition: response time repartition for a period according to the distribution set with
the configuration parameter.
Default distribution values are : <50, <75, <100, <150, <300, <5000, >=5000 in ms.

The last two counters are updated when the action "stop-timer" is executed in the scenario whether the call
succed or not.

Seagull - Core

Page 30
Copyright © 2006 HP OpenCall Software All rights reserved.

http://en.wikipedia.org/wiki/Comma-separated_values
http://www.octave.org
http://en.wikipedia.org/wiki/Microsoft_Excel

Here is an example of a global statistic file (some counters have been removed):
StartTime;LastResetTime;CurrentTime;ElapsedTime(P);ElapsedTime(C);Rate(P);Rate(C);IncomingCall(P);IncomingCall(C);
2004-12-02 11:11:01;2004-12-02 11:11:01;2004-12-02
11:11:01;00:00:00;00:00:00;111.111;111.111;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:05;2004-12-02
11:11:06;00:00:05;00:00:05;40.7837;40.9018;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:10;2004-12-02
11:11:11;00:00:05;00:00:10;50.9287;45.9128;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:15;2004-12-02
11:11:16;00:00:05;00:00:15;50.729;47.5145;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:20;2004-12-02
11:11:21;00:00:05;00:00:20;50.729;48.3179;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:25;2004-12-02
11:11:26;00:00:05;00:00:25;50.9287;48.838;0;0;
2004-12-02 11:11:01;2004-12-02 11:11:30;2004-12-02
11:11:31;00:00:05;00:00:30;50.729;49.153;0;0;

Here is a real example of generated file: server-stat.csv (server-stat.csv) .

8.2. Response time statistics

While global statistics are used to monitor the traffic over time, response time statistics are meant to be used
to measure time between two messages. This is what is usually used in performance test campaigns.

Note:
To activate response time statistics, you must specify the data-log-* parameters in the configuration file AND manage the timer in the scenario, which
means to have a <start-timer> and <stop-timer> in the scenario file.

Warning:
Do not imbricate timers like this:
<start-timer>
...
<start-timer>
...
<stop-timer>
...
<stop-timer>

Always stop a timer before starting a new one:
<start-timer>
...
<stop-timer>
...
<start-timer>
...
<stop-timer>

The parameters to be set in the configuration file are the following:

• 1) data-log-period

This number specifies the time interval (in seconds) at which the logs are dumped to file.
Example: if set to 10, the logs are dumped every 10 seconds.

• 2) data-log-number

This number specifies the interval in number of messages at which the logs are dumped to file.

Seagull - Core

Page 31
Copyright © 2006 HP OpenCall Software All rights reserved.

server-stat.csv

Example: if set to 500, the logs are dumped every 500 messages.

• 3) data-log-file

It specifies the file to which the logs are dumped. Warning: if not set, no logs are available, even on the
display screen !

• 4) data-log-rtdistrib

This number specifies the width of the distribution of the response times (in milliseconds !!) to be
counted during the measurement interval. Here is an example, with the value set to 2000:

If data-log-period and data-log-number are both defined, then they are simultaneously active: the logs are
dumped every X seconds AND every Y messages.

If data-log-rtdistrib is not defined in the configuration file, then the response time statistics look like:
time-ms;response-time-ms;
2210.899902;2159.582000;
3204.348877;2203.527000;
4124.591064;2123.738000;
5150.986084;2150.094000;
6124.566895;2123.638000;
7190.973877;2186.730000;
8151.060059;2150.058000;
9144.521973;2143.523000;
10171.154053;2166.825000;
11184.657959;2180.298000;
12121.958984;2120.847000;
13151.222900;2146.783000;
14151.293945;2150.089000;
15174.738037;2170.263000;
16201.378906;2196.880000;
17151.288086;2149.990000;

where the response-time-ms values correspond to the average response time since the previous statistics
response time has been logged.

If all data-log-* parameters are defined in the configuration file, then the response time statistics look like:
Dump Periodic;
1149;1;
1156;4;
1169;1;
1196;1;
1216;1;
Dump Periodic;
1140;1;
1149;2;
1156;4;
1209;1;
1216;2;

....

Dump Cumulative;
1115;1;

Seagull - Core

Page 32
Copyright © 2006 HP OpenCall Software All rights reserved.

1116;1;
1118;1;
1119;1;
1121;1;
1123;2;
1127;3;
1128;1;
1129;2;
1130;12;
1131;3;
1132;3;
1133;4;
1135;1;
1136;8;
1137;11;
1138;12;
...

This gives the distribution of the number of calls that have been counted during the measurement interval
and globally for each response time value between 0 and data-log-rtdistrib milliseconds.

Seagull - Core

Page 33
Copyright © 2006 HP OpenCall Software All rights reserved.

8.3. Protocol statistics

Protocol statistics are used to get global information on the traffic for a specified protocol. To activate
protocol statistics, you must set the protocol parameters in the configuration file. Those parameters are the
following:

• 1) display-protocol-stat

Setting this parameter to true enables the protocol statistics. If it is not set to true, you will not get any
protocol statistics at screen of in log files, even if the following parameters are set.

• 2) log-protocol-stat-period

This number specifies the time interval (in seconds) at which the logs are dumped.
Example: if set to 5, the logs are dumped every 5 seconds.

• 3) log-protocol-stat-name

This parameter specifies the names of the protocols for which the statistics are set. Put "all" to get
statistics for all the used protocols. Otherwise, state the names of the protocols separated by semi-colons.
If you specify the names of several protocols and all, it will only consider the "all" keyword" and display
statistics for all the protocols.
If you do not specify this parameter, you do not get any protocol statistics.

• 4) log-protocol-stat-file

It specifies the file to which the logs are dumped.

If the display-protocol-stat parameter is set to true, but the log-protocol-stat-period is set to zero, you will
not get any statistics displayed on screen. In this case, if you define the log-protocol-stat-file, you will get
statistics in the file, even though you do not see them on screen.

Here is an example of the protocol statistics screen that you get (example from a TCAP execution):
|--------------------------------+---------------------+-----------------------|
| | Periodic value | Cumulative value |
| primitive | sent | received | sent | received |
|--------------------------------+---------------------+-----------------------|
MGT	0	0	0	0
NO_PRIMITIVE	0	0	0	0
SCCP_N_COORD	0	0	0	0
SCCP_N_COORD_RES	0	0	0	0
SCCP_PC_STATUS	0	0	0	0
SCCP_USER_STATUS	0	0	0	1
SWITCH_DONE	0	0	0	0
SWITCH_STARTED	0	0	0	0
TC_BEGIN	0	77	0	18280
TC_CONTINUE	77	77	18280	18277
TC_END	76	0	18276	0
TC_NOTICE	0	0	0	0
TC_P_ABORT	0	0	0	0
TC_UNI	0	0	0	0
TC_U_ABORT	0	0	0	0
--- Next screen : Press the same key ---				

8.4. Scenario statistics

Seagull - Core

Page 34
Copyright © 2006 HP OpenCall Software All rights reserved.

Scenario statistics are used to get information for each type of scenario that exist in the scenario file. Those
can be: init, traffic, default and abort scenarios. To activate scenario statistics, the display-scenario-stat
parameter must be set to true in the configuration file:

Here is an example of the scenario statistics screen (example from traffic scenario in a TCAP execution):
|--------------------------+-------------------------+-------------------------|
	Messages	Retrans	Timeout	Unexp.
TC_BEGIN <--	20702	0	0	0
TC_CONTINUE -->	20702	0	0	0
TC_CONTINUE <--	20699	0	0	0
TC_END -->	20699	0	0	0
--------------------------+-------------------------+-------------------------				

Warning:
The scenario statistics are only displayed on screen, no logs are dumped to file.

8.5. Getting statistics out of response time raw data

Once you have the raw statistics data, you can use a variety of tools coming with Seagull to analyse the
datas and get various statistics out of it: Number of values, minimum value, maximum value, average value,
variance, standard deviation and N-th percentile.

A schema that summarizes the various tools:

• csvsplit is used to create a reduced CSV file from the raw CSV data. csvsplit combines two features:
• Sample raw CSV data by taking one measure out of "r"
• Suppress the beginning of raw CSV data to remove unwanted "startup" data

Usage:
$ csvsplit
Syntax : csvsplit <in csv file> <out csv file>

[-skip n] skip the n first values (default 0)
[-ratio r] let 1 out of r value (default 10)

• computestat.ksh is used to compute the statistics from the raw or sampled CSV data. computestat.ksh
relies on Octave to compute reliable statistical results.

Usage:
$ computestat.ksh -help
Command line syntax of /usr/local/bin/computestat.ksh - options
-in <file name> : input file (default file.csv)
-out <file name> : output file (default file.save)

Seagull - Core

Page 35
Copyright © 2006 HP OpenCall Software All rights reserved.

-nth <percentile> : nth percentile calculus (default 95)
-help : display the command line syntax

The output of computestat.ksh is a text file like the following:
[Using file : client-rtt.2004-12-02.11:11:01.016.csv.y]
[number values : 23136]
[minimum value : 1.267000]
[maximum value : 29.074000]
[average value : 3.321995]
[variance : 0.803202]
[standard deviation: 0.896216]
[95th percentile : 5.410000]

• plotstat.ksh is used to create graphics from the raw or sampled CSV data. plotstat.ksh relies also on
Octave to create PNG (http://en.wikipedia.org/wiki/Png) graphical files.

Usage:
$ plotstat.ksh -help
Command line syntax of /usr/local/bin/plotstat.ksh - options
-in <file name> : input file (default file.csv)
-out <file name> : output file (default file.png)
-stat <file name> : input stat file name (default no file)

If you specify a statistics results file that has been computed with computestat.ksh through the -stat
option, then two additional plots will be drawn: one line for the average time and one line for the
percentile.

Seagull - Core

Page 36
Copyright © 2006 HP OpenCall Software All rights reserved.

http://en.wikipedia.org/wiki/Png

Here is an example of the output of plotstat.ksh:

Seagull - Core

Page 37
Copyright © 2006 HP OpenCall Software All rights reserved.

9. Logs and traces

The logging feature of Seagull provides several logging levels that can be combined (except A and N that
are exclusive):

• E-Errors
• Syntax error in config or scenario files
• Unable to open a file

• W-Warnings - non blocking errors
• No init scenario
• No more call context availables

• T-Traffic events
• Unexpected messages
• Refused calls
• Incorrect state

• M-Messages (decoded messages)
• B-Buffer (hex dumps)
• V-Verdict (Trace the result of each call with its session-id in the log file)

If the call has no session id, no logs are traced.
Be awared that the session-id may not be unique in the log file.
The "Init" section is considered as a independant call.
• passed : call is succesful
• failed : call is failed

• U-User logs (possibility to user to add user comments in the log file)
• A-All
• N-None

The log level is specified in the command line, using -llevel option. Example: -llevel EWT will log
Errors, Warnings and Traffic events.

Note:
By default, all log entries are time-stamped. This is costly in terms of CPU time for the test tool. These time-stamps can be disabled by using the
"-notimelog" command line option when launching the tool.

10. Configuration files

There are 3 different configuration files:

• Generic configuration file - describing traffic and network parameters
• Protocol dictionary configuration file - rarely to be edited
• Scenario file - describing the sequence of messages to exchange with the system under test and

intermediate actions to perform

10.1. Generic configuration

The generic configuration file describes the network environment as well as traffic parameters.

The network environment is described by "transport channel entities". The transport entity is then used as an

Seagull - Core

Page 38
Copyright © 2006 HP OpenCall Software All rights reserved.

attribute of send and receive scenario commands, as well as during the opening of the transport channel
(see below).

<!-- Synchro example -->
<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration name="Simple IP Server Conf">

<define entity="transport"
name="trans-ip-v4"
file="libtrans_ip.so"
create_function="create_cipio_instance"
delete_function="delete_cipio_instance"
init-args="type=tcp">

</define>
<!-- Then you specify the opening of the channel, on the transport previously
described. -->

<!-- For a server listening to port 15000, interface "192.168.0.13", it will look like
this: -->

<define entity="channel"
name="channel-1"
protocol="command-synchro-v1"
transport="trans-ip-v4"
open-args="mode=server;source=192.168.0.13:15000">

</define>

<!-- For a client sending messages to port 15000 on interface "192.168.0.13", it will
look like this: -->
<define entity="channel"

name="channel-1"
protocol="command-synchro-v1"
transport="trans-ip-v4"
open-args="mode=client;dest=192.168.0.13:15000">

</define>

You can also specify traffic parameters in the configuration file, like the call rate, the name of the statistics
file, etc.
<define entity="traffic-param"

name="call-rate"
value="10">

</define>
<define entity="traffic-param"

name="display-period"
value="1">

</define>

<define entity="traffic-param"
name="log-stat-period"
value="5">

</define>

<define entity="traffic-param"
name="log-stat-file"
value="../logs/client-stat.csv">

</define>

10.2. Protocol dictionary

In Seagull, messages and parameters of protocols used in a scenario are described in an XML dictionary.
This allows a great flexibility to add new messages or parameters. You can create as many dictionaries as
you want, for example to work with different flavors or versions of a protocol.

Seagull - Core

Page 39
Copyright © 2006 HP OpenCall Software All rights reserved.

To specify the dictionary, use the -dico option in the command line:
-dico ../config/[dictionary-name].xml

To be able to work with a multi-protocol scenario, specify several dictionaries as arguments of the -dico
option:
-dico ../config/[dictionary_1-name].xml ../config/[dictionary_2-name].xml

A dictionary contains several XML sections: protocol, types, header, body, dictionary:

10.2.1. Protocol

"protocol": this is the top level section. Depending on the protocol, some attributes can be configured there:

• Common for all protocols
• name: a name used to identify the protocol in the config file
• type: can be "text" (like XCAP or H248 text), "binary" (like Diameter), "external-library" (like

OCTCAP) or "binary-body-not-interpreted" (to support some custom protocols)
• use-transport-library: "trans-ip" (TCP or UDP), "trans-extsctp" for SCTP, "trans-octcap" for

OCTCAP (this refers to the name of the library file).

• For binary type
• For text type

• filter: to specify a filter to be used when reading the XML scenario before sending it. Used to
remove heading and trailing spaces or tabs, add additional CR/LF,

Example: "lib=libparser_h248.so;function=filter_h248"

• field-separator: to specify the text sequence to be appended to each line in the XML scenario.

Example: field-separator="\r\n" will replace the end of line of the scenario with "\r\n".

• body-separator: text sequence to be added between the header and the body sections.

Example: body-separator="\r\n" for XCAP, body-separator="{" for H248 text.

• external-library type
• context-factory-constructor: name of the constructor method of message (which is defined in the

external library).
• context-factory-destructor: name of the destructor method of message (which is defined in the

external library).

• binary-body-not-interpreted type
•

FIXME (Olivier):
Add context-factory explanations

10.2.2. Types

"types": this section contains all the types needed for the protocol. An example of the Types section for the
Diameter protocol is available there (diameter.html#Types) .

This section is optional (but becames mandatory if the protocol needs specific types).

10.2.3. Header

"header": this section contains the description of the message header. An example of the Header section for

Seagull - Core

Page 40
Copyright © 2006 HP OpenCall Software All rights reserved.

diameter.html#Types

the Diameter protocol is available there (diameter.html#Header) .
"fielddef" tags define elements of the header.

For a text protocol, all fields have the string type and they can have "regexp" tags to define them.
Example (SIP protocol):
<fielddef name="call-id"

format="call-id: $(field-value)\r\n">
<regexp name="call-id"

expr="[Cc][Aa][Ll][Ll]-[Ii][Dd][]*:[]*([!-}]*).*$"
nbexpr="2"
subexpr="1">

</regexp>
</fielddef>

For other protocols, several attributes are needed.
Example (OCTCAP protocol):
<fielddef name="uid" type="number"

set-function="set_primitive_uid"
get-function="get_primitive_uid">

</fielddef>

This section is mandatory.

Name Description Example

name Name of the field. Any string
without spaces.

-

size Size of the field. 2

unit Unit of the size. octet

type Optional. Type of the size
(number, string or a type
defined in the dictionary "types"
section)

number

mask Optional. For binary protocol.
Mask of the field. If only a part
of the field is significant, a
mask can be applied to the
value of the field.

124

to-string Optional. For external protocol.
Name of the function to convert
the field from an integer value
to a string value of the field.

-

from-string Optional. For external protocol.
Name of the function to convert
the field from a string value to
an integer value of the field.

-

set-function Optional. For external protocol.
Name of the function to set the
value of the field.

-

get-function Optional. For external protocol.
Name of the function to get the
value of the field.

-

default Optional. Set a default value for -

Seagull - Core

Page 41
Copyright © 2006 HP OpenCall Software All rights reserved.

diameter.html#Header

the field.

config-field Optional. If the value if set in
the configuration file, name of
the parameter of the
configuration file.

-

Table 1: List of fielddef attributes

10.2.4. Body

"body": this section contains the description of the message body (which comes after the header). An
example of the Body section for the Diameter protocol is available there (diameter.html#Body) .

This section is mandatory.

10.2.5. body-method

"body-method": this section contains the methods to be used to parse the body. It is composed of several
"def-method" sections.

• name: Name of the body-method. It can be anything.
• method: It can be "length" (the length of the body to be parsed is indicated by the param parameter) or

"parser"
• param: For a "length" method, it specifies the parameter to be used to indicate the body length

(Example: param=Content-Length). For a "parser" method, it indicates the library and the function to be
used (Example for XCAP: "lib=libparser_xml.so;function=parse_xml"; for H248:
"lib=libparser_h248.so;function=parse_h248")

Example:

FIXME (Olivier):
Add body-method example

This section is mandatory.

10.2.6. external-method

"external-method": this section contains the methods to be used to encode fields. It is composed of several
"defmethod" sections. The concerned fields must refer to this method in the 'set-value' action in the scenario
with the attribute 'method' (see "set_value" action). For now, "crypto_method" from "libtrans_iptls.so"
library is the only available method.
An example is described for the SIP protocol at SIP authentication (sip.html#sip_authentication) .

• name: Name of the method. It can be anything.
• param: It indicates the library and the function to be used.

(Example: "lib=libtrans_iptls.so;function=crypto_method")

Example:
<external-method>
<defmethod name="authentication"

param="lib=lib_crypto.so;function=crypto_method">
</defmethod>

</external-method>

This section is optional.

Seagull - Core

Page 42
Copyright © 2006 HP OpenCall Software All rights reserved.

diameter.html#Body
sip.html#sip_authentication

Name Library Description Supported Seagull
version

sys_time_ms lib_generalmethods.so System time in
milliseconds.

>1.7

Table 1: List of general purpose methods

10.2.7. Dictionary

"dictionary": this section contains all possible messages and parameters.

In addition, several attributes are available:

• session-method: It can be "field", in which case a session or "call" is identified with a specified protocol
field, or it can be "open-id", in which case a session or "call" is identified with the "open-id" (e.g. a
socket id in case of HTTP)). "open-id" is currently implemented only for "text" and "binary" protocols.

• session-id (mandatory for a "field" session-method): Only for a "field" session-method. It specifies
the field to be used to identify each session (or "call").

• out-of-session-id (optional for a "field" session-method): Only for a "field" session-method. It
specifies a field to be used in backup of the one defined by the session-id attribute.

This section is mandatory.

11. Correlation

In general, instances of a scenario (aka calls) are identified, see Dictionary, either with a session-id (a
protocol field) or with an open-id (a socket id).

In some cases, the session-id cannot be unique during the whole call: its value may be changed during the
call and/or a different field of the message (header or body) is used for the rest of the call. In particular this
can be the case if several channels are used during the scenario.
Here is an example of such call flow for which Seagull could play the role of client, server_1 or server_2:

client server_1 server_2 |
| |
| | The client

defines the session-id-1
| session-id-1 | |
|--------------------->| |

| |
| | The server_1

defines session-id-2 and sends it to the client via a field of the message
session-id-1 | |

|<---------------------| | The client
receives a message with session-id-1 as session-id and that contains

| | the value
session-id-2 in another field of the message.

| session-id-2 | | The client
keeps this new session-id for the call (storing it into its "map")

--------------------->	
session-id-2	
<---------------------	

| |
PAUSE | |

session-id-2 | |
|<--| | The client

receives a message with session-id-2 as session-id
| session-id-2 | | It recognizes

Seagull - Core

Page 43
Copyright © 2006 HP OpenCall Software All rights reserved.

the call and continues it
|-->| |
|

...

To support these situations Seagull provides the "correlation" feature. It allows to use several session-ids for
the same call.
At Seagull level and for each channel, a list (called "map") of the known session-ids is built to match
received messages to current calls. A constraint is that Seagull must know the alternative session-id of a call
before it can recognize any message with this alternative session-id.
From a user perspective, the scenario includes a "correlation" section (detailed below) and the "label" tag is
used from the scenario commands (e.g. send and receive) to refer to the specific processing defined in the
correlation section.
The correlation section is optional in the scenario file but it must be present to enable the correlation feature.
If not present, the "label" tags are ignored in the scenario commands and a call can only be identified by a
single session-id value.

Example of a correlation section, see below for the details of the sub-sections:

<correlation>
<channel name="channel-1">

<retrieve>
<search-in-map name="call-id"></search-in-map>

</retrieve>

<command name="command-1">
<pre-action>

<!-- For each new call, increment the callid counter -->
<inc-counter name="callid-counter"> </inc-counter>
<!-- And set the call-id field -->
<set-value name="call-id"

format="$(callid-counter)@127.0.0.1"></set-value>
</pre-action>

<post-action>
<store name="SID" entity="call-id"></store>
<insert-in-map channel="channel-1" name="SID"></insert-in-map>

</post-action>
</command>

<command name="command-1b">
<post-action>

<store name="alt-sid" entity="o"></store>
<insert-in-map channel="channel-2" name="alt-sid"></insert-in-map>

</post-action>
</command>

</channel>
<channel name="channel-2">

<retrieve>
<search-in-map name="call-id"></search-in-map>

</retrieve>
</channel>

</correlation>

For each channel used in the scenario, a "channel" sub-section must be added. It contains at least the retrieve
method and optionnally some commands.

The "retrieve" sub-section defines all the fields (defined in the dictionary) in which the session-id can be

Seagull - Core

Page 44
Copyright © 2006 HP OpenCall Software All rights reserved.

located. For each such field, a "search-in-map" tag must be added.
For a new received message on a given channel, Seagull gets the value of the field defined in "name" and
searches in its "map" of call contexts to match a known call.
Example:

<retrieve>
<search-in-map name="Session-Id"></search-in-map>
<search-in-map name="HbH-id"></search-in-map>

</retrieve>

The "command" sub-section can contain any other actions of the scenario but it must be present to host an
"insert-in-map" action when it is necessary to store a new value of session-id for a call.
The "pre-action" tag defines the actions which must be done before the scenario command.
The "post-action" tag defines the actions which must be done after the scenario command.
The "insert-in-map" action is specific to the correlation feature. It inserts in the list of known session-ids for
the given "channel" the value of the "entity" (that is defined in the dictionary).
Example:

<command name="command-1">
<pre-action>
<set-value name="HbH-id" format="$(HbH-counter)">
</set-value>
</pre-action>
<post-action>
<insert-in-map channel="channel-1" entity="HbH-id"></insert-in-map>
</post-action>

</command>

Warning:
If no "insert-in-map" action is defined in the correlation section, then seagull implements a default behavior. It processes messages by looking for the
session-id field defined in the dictionary and inserting it in the map of the first channel defined in the configuration file. this would not work in case
of multiple channels.

Finally the correlation "commands" defined above are linked to the scenario by setting a "label" into the
scenario command (send).
Example:

<send channel="channel-1" label="command-1">
<action>
<start-timer></start-timer>

</action>
<command name="CER">
<avp name="Origin-Host" value="seagull.ims.hpintelco.org"> </avp>
<avp name="Origin-Realm" value="ims.hpintelco.org"> </avp>
<avp name="Host-IP-Address" value="0x00010a03fc5e"> </avp> <!-- IPV4

10.3.252.94-->
<avp name="Vendor-Id" value="11"> </avp>
<avp name="Product-Name" value="HP Cx Interface"> </avp>
<avp name="Origin-State-Id" value="1094807040"> </avp>
<avp name="Supported-Vendor-Id" value="10415"> </avp>
<avp name="Auth-Application-Id" value="167772151"> </avp>
<avp name="Acct-Application-Id" value="0"> </avp>
<avp name="Vendor-Specific-Application-Id">
<avp name="Vendor-Id" value="11"></avp>
<avp name="Auth-Application-Id" value="167772151"></avp>
<avp name="Acct-Application-Id" value="0"></avp>

</avp>
<avp name="Firmware-Revision" value="1"> </avp>

Seagull - Core

Page 45
Copyright © 2006 HP OpenCall Software All rights reserved.

</command>
<action>
<stop-timer></stop-timer>

</action>
</send>

An example of the correlation feature is proposed for the SIP protocol: SIP correlation example
(sip.html#sip_correlation) .

11.1. Correlation with open id feature

The open-id feature is compatible with the correlation one.
The configuration is the same as a open id one:
Example:
<define entity="channel"

name="channel-2"
protocol="xcap-protocol"
transport="trans-1"
global="no"
open-args="mode=client;dest=127.0.0.1:8080">

</define>

The traffic section is not changed except the label:
Example:
<send channel="channel-2" label="command-2">

<action>
<open args="mode=client;dest=127.0.0.1:8080"></open>

</action>
<message>
...

The correlation section has to be defined like this :
Example:
<channel name="channel-2">

<retrieve>
<search-in-map name="session-method-open-id"></search-in-map>

</retrieve>

<command name="command-2">
<post-action>
<insert-in-map channel="channel-2" name="default-session-id"></insert-in-map>

</post-action>
</command>

</channel>
"session-method-open-id" is the key word to define a search of the id of the call by the socket.
"default-session-id" is the key word to let Seagull insert the id of the call into the map (here the socket of the
call).

12. Getting support

For support on Seagull, please send your questions on Seagull users mailing list:
gull-users@lists.souceforge.net (mailto:gull-users@lists.souceforge.net) . You will likely get support from
Seagull users.

13. Reference

Seagull - Core

Page 46
Copyright © 2006 HP OpenCall Software All rights reserved.

sip.html#sip_correlation
mailto:gull-users@lists.souceforge.net

This section is the reference for all values and parameters of Seagull.

13.1. Generic configuration reference

13.1.1. Transport configuration

Warning:
The sending segmentation is not implemented yet in Seagull. If the message cannot send entirely, a log is put on the log-file to indicate it. No other
particular treaments are done.
The receiving segmentation is implemented. If a message is not complete, it is stored and the next buffer read is push at the end of stored incomplete
message.

The following table is a list of transport channel parameters, that can be present in the generic configuration
file.

Name Description Recommended value

name Name of the transport entity.
Any string without spaces.

-

file Shared library to be used for
transport.

Value is "libtrans_ip.so" for
TCP or UDP over IP,
libtrans_iptls.so for TLS over IP
(based on openssl library),
"libtrans_extsctp.so" for SCTP
(this one is based on an
external SCTP library) and
"libtrans_octcap.so" for TCAP.

create_function Function used to create a
transport instance

Value is
"create_cipio_instance" for
IP-based protocols,
"create_ciptlsio_instance" for
IP/TLS and
"create_ctransoctcap_instance"
for TCAP.

delete_function Function used to delete a
transport instance

Value is
"delete_cipio_instance" for
IP-based protocols,
"delete_ciptlsio_instance" for
IP/TLS and
"delete_ctransoctcap_instance"
for TCAP.

init-args Arguments to be passed to the
transport library. The
arguments are separated by
semi-colons (;).

• For the "libtrans_ip.so", the
possible values are:
• type = tcp (default=tcp)
• decode-buf-len

(default=4096): size of
the reception buffer
(maximum message size
after re-assembly)

• encode-buf-len
(default=4096): size of
the sending buffer
(maximum message size
to be sent (can be

Seagull - Core

Page 47
Copyright © 2006 HP OpenCall Software All rights reserved.

segmented))
• read-buf-len

(default=1024): amount
of bytes to read on the IP
socket at a time - several
reads might be necessary
if buffer is the message to
read is bigger than the
buffer (impact on
performances)

• close-wait-ms
(default=10): value in
milliseconds before the
socket is actualy closed
(used for SO_LINGER).

• For the "libtrans_iptls.so", the
possible values are:
• method=SSLv23 :

indicates the method of
connection. This value
corresponds to
SSLv23_method

• cert_chain_file=xxx :
indicates the name of the
certificate

• private_key_file=yyy :
indicates the name of the
private key

• passwd=zzz : this
password protects the
private key

• secure : indicates if the
mode is secure at the
begining of the traffic
(yes/no , default:yes)

• decode-buf-len
(default=4096): size of
the reception buffer
(maximum message size
after re-assembly)

• encode-buf-len
(default=4096): size of
the sending buffer
(maximum message size
to be sent (can be
segmented))

• read-buf-len
(default=1024): amount
of bytes to read on the IP
socket at a time - several
reads might be necessary
if buffer is the message to
read is bigger than the
buffer (impact on
performances)

• For the "libtrans_octcap.so",
the possible parameters are
the following (see details here

Seagull - Core

Page 48
Copyright © 2006 HP OpenCall Software All rights reserved.

http://gull.sourceforge.net/doc/octcap.html#Transport+protocols+and+channels+for+TCAP

(http://gull.sourceforge.net/doc/octcap.html#Transport+protocols+and+channels+for+TCAP)
):
• flavour (possible values:

WBB, AAA, WAA,
ABB)

• path to the reference
library (optional)

• reference library
(optional)

Table 1: List of transport channel parameters (transport entity)

Name Description Recommended value

name Name of the transport entity.
Any string without spaces.

-

protocol Protocol to be used for this
channel.

The value must correspond to
one of the protocol name
defined in a dictionary.

global Indicate if a channel is declared
and used globally (opened
once) or needs to be opened
for each scenario call (using
the "open" action). By default,
the channel is declared
globally. adding global="no"
will allow to open channels in
the scenarios.

-

transport Transport to be used for this
channel

The value must correspond to
one transport defined
previously.

reconnect Optional. If set to "yes", seagull
tries to re-connect if the
connection is lost.

yes

open-args Arguments to specify
connexion parameters.
• libtrans_ip based channels:

• mode (mandatory):
"client" (first message on
the channel is sent) or
"server" (first message on
the channel is received)

• dest (mandatory):
destination IP
address/port to send
messages

• standby (optional): standy
destination IP
address/port to send
messages.(Note that this
feature is useful only
when reconnect feature is
used, in which case
seagull tried to connect to

-

Seagull - Core

Page 49
Copyright © 2006 HP OpenCall Software All rights reserved.

the active and standby
destinations alternatively)

• source (optional): source
IP address/port to send
messages (if not
specified, the system
chooses the best one)

Example of value for a client
for a IP-based protocol:
"mode=client;dest=127.0.0.1:3868"
Example of value for active
and standby clients for a
IP-based protocol:
"mode=client;dest=127.0.0.1:3868;standby=127.0.0.1:3869"
Example of value for a server
for a IP-based protocol:
"mode=server;source=127.0.0.1:3868"

• libtrans_octcap based
channels:
• class (mandatory): Name

of the OCSS7 stack
• ossn (mandatory):

Originating SSN used to
connect Seagull TCAP
application to OCSS7
stack (one of the local
OCSS7 SSN)

• application (optional):
Application ID used by
Seagull (refer to OCSS7
Application Developer's
Guide)

• instance (optional):
Instance ID used by
Seagull (refer to OCSS7
Application Developer's
Guide)

Example:
"class=SS7_Stack_2;ossn=20;application=2;instance=2"

Table 2: List of channel parameters (channel entity)

13.1.2. Generic configuration

This table is a list of traffic parameters, that can be present in the generic configuration file.

Name Description Recommended value Example

call-rate Specify the call-rate in
a number of calls per
seconds. Only
applicable to the client
side.

- <define
entity="traffic-param"
name="call-rate"
value="500">
Indicates that Seagull
will start with a steady
call rate of 500 calls
per seconds.

display-period Define the refresh rate 1 <define

Seagull - Core

Page 50
Copyright © 2006 HP OpenCall Software All rights reserved.

of on-screen
information. 0 means
that on-screen
information is not
displayed. See also
display-protocol-stat
and
display-scenario-stat to
set statistics.

entity="traffic-param"
name="display-period"
value="1">
Refreshes the screen
every one second.

log-stat-period log-stat-period is the
periodicity, in seconds,
of statistics dump in
the statistic file
(log-stat-file
parameter).

60 <define
entity="traffic-param"
name="log-stat-period"
value="60">: a new
line in the statistic file
is created every 60
seconds.

log-stat-file The name of the
statistic log file. The
date is inserted
between the name and
the extension.
WARNING: both
log-stat-period and
log-stat-file must be
present for statistics to
be activated.

- <define
entity="traffic-param"
name="log-stat-file"
value="client-stat.csv">:
the statistics are saved
in
client-stat.2004-10-13.13:23:01.120.csv
file.

data-log-file The name of the
response time data file.
The date is inserted
between the name and
the extension.
WARNING: you need
to specify a file in order
to activate the
response time
statistics.

- <define
entity="traffic-param"
name="data-log-file"
value="client-rtt.csv">:
the response time
statistics are saved in
the file you specified.

data-log-period The response time
data is saved every n
second period. If value
is 0, then the
data-log-number
traffic-param is used.

1 <define
entity="traffic-param"
name="data-log-period"
value="10">: the
response time
statistics are saved in
the file every 10
seconds (default is 1
second).

data-log-number The response time
data is saved every m
numbers of data. This
ensure that memory
usage does not get too
high.

200 <define
entity="traffic-param"
name="data-log-number"
value="500">: the
response time
statistics are saved in
every 500 measures
(default is 200
measures).

Seagull - Core

Page 51
Copyright © 2006 HP OpenCall Software All rights reserved.

data-log-rtdistrib Defines the value of
the interval on which
the messages are
sampled. This value is
in milliseconds.

- <define
entity="traffic-param"
name="data-log-rtdistrib"
value="2000">
</define>

response-time-repartitionThe intervals in which
the response time
measures are going to
be spreaded.

- <define
entity="traffic-param"
name="response-time-repartition"
value="25,50,75,100,125,150,200,250,300,350">

log-file The base name of the
log file. The date is
inserted between the
name and the
extension.

- <define
entity="traffic-param"
name="log-file"
value="client.log">:
the logs are saved in
client.2004-10-13.13:23:01.120.log
log file.

files-no-timestamp To specify to not insert
the date between the
name and the
extension in the log
files names.

- <define
entity="traffic-param"
name="files-no-timestamp"
value="true">: the
logs are saved in
"client.log" log file.

display-protocol-stat Enable (true) / disable
(false) the protocol
statistics. If you set this
parameter to false, you
do not get any protocol
statistics neither on
screen nor dumped to
file.

true <define
entity="traffic-param"
name="display-protocol-stat"
value="true">
</define>

log-protocol-stat-period Specify the interval in
seconds at which the
logs are dumped.
Example: if set to 5,
the logs are dumped
every 5 seconds.
If you only want the
logs dumped to file and
you do not want
information displayed
on screen, set this
value to 0.

- <define
entity="traffic-param"
name="log-protocol-stat-period"
value="5">
</define>

log-protocol-stat-name Specify the names of
the protocols for which
the statistics are set.
Put "all" to get
statistics for all the
protocols used.
Otherwise, state the
names of the protocols
separated by
semi-colons.
If you specify the

all <define
entity="traffic-param"
name="log-protocol-stat-name"
value="all">
</define>

Seagull - Core

Page 52
Copyright © 2006 HP OpenCall Software All rights reserved.

names of several
protocols and all, it will
only consider the "all"
keyword" and display
statistics for all the
protocols.
If you do not specify
this parameter, you do
not get any protocol
statistics.

log-protocol-stat-file Specify the file in
which the protocol logs
are dumped. The
name of the protocol
and the time and date
are added to the
filename to make it
unique.

- <define
entity="traffic-param"
name="log-protocol-stat-file"
value="../logs/server-protocol-stat.csv">
</define>

display-scenario-stat Enable (true) / disable
(false) the scenario
statistics. Remember
that the scenario
statistics are only
displayed on screen,
and not dumped to file.

true <define
entity="traffic-param"
name="display-scenario-stat"
value="true">
</define>

number-calls Number of calls to be
done. It is available for
client and server. Once
the number of calls is
reached, no new calls
are :
- placed by the
client(note that some
additional calls can be
placed, but no less)
- accepted by the
server.
WARNING: the init
section of the scenario
is considered as one
call for the server side.

- <define
entity="traffic-param"
name="number-calls"
value="1000">:
Placed (client) or
accepted (server) at
least 1000 calls.

call-timeout-ms call-timeout-ms defines
a timer after which, if
the scenario is stuck,
the call will be closed
and marked as failed.
0 means that this
feature is de-activated.

0 <define
entity="traffic-param"
name="call-timeout-ms"
value="30000">
</define> specifies
that a call that is stuck
for more than 30s will
be terminated.

call-open-timeout-ms call-open-timeout-ms
defines a timer after
which, if the socket
used by the call has
not been properly open

0 <define
entity="traffic-param"
name="call-open-timeout-ms"
value="5000">
</define> mark the

Seagull - Core

Page 53
Copyright © 2006 HP OpenCall Software All rights reserved.

(if the system is
overloaded for
example), the call is
marked as failed. 0
means that this feature
is de-activated.

call as failed if the
socket creation
process has not been
achieved within 5s.

call-timeout-behaviour-abortIf a timeout is detected
for a call, this
parameter defines the
behaviour before
closing the call. If it is
set to "true", the
section "abort" is
executed before
closing the call.
A message is logged if
this parameter is set to
true and the section
"abort" is missing in
the sceanrio.

true <define
entity="traffic-param"
name="call-timeout-behaviour-abort"
value="true">
</define>

msg-check-level Type of message
check. Possible values
are "P" (Presence
check) and "A"
(Additional field check).
The default value is
"P".

- <define
entity="traffic-param"
name="msg-check-level"
value="P">
</define> checks
that at least all
parameters listed in
the scenario are
present.

msg-check-behaviour Behaviour in case of
message check fails.
Possible values are "E"
(log error and abort
call) and "W" (log
warning and continue
call). The default value
is "W".

- <define
entity="traffic-param"
name="msg-check-behaviour"
value="E">
</define>

burst-limit (tuning) The burst limit
corresponds to the
number of new calls
that Seagull can place
in a period of one
second. This is used to
smooth the load at the
beginning of a traffic or
when traffic resumes.

50 <define
entity="traffic-param"
name="burst-limit"
value="50">
Indicates that Seagull
will not place more
than 50 new calls per
seconds.

max-send (tuning) max-send corresponds
to the number of
messages that can be
sent in one scheduling
loop. NB: in future
versions of the tool,
this value will not be
accessible anymore. It

(call rate) *
nb_send_per_scene

<define
entity="traffic-param"
name="max-send"
value="250">

Seagull - Core

Page 54
Copyright © 2006 HP OpenCall Software All rights reserved.

will be computed from
the call rate and the
scenarii.

max-receive (tuning) max-receive
corresponds to the
number of messages
that can be received in
one scheduling loop.
NB: in future versions
of the tool, this value
will not be accessible
anymore. It will be
computed from the call
rate and the scenarii.

at least (call rate) *
nb_recv_per_scene

<define
entity="traffic-param"
name="max-receive"
value="250">

select-timeout-ms
(tuning)

Defines the value of
the timer set when
listening to the system,
waiting for the
messages. Counter in
milliseconds.
For low call-rate, set a
value at least lower
than the smallest "wait"
in the scenario.
Be careful, the lower
the value, the more
CPU time will used.

1000 <define
entity="traffic-param"
name="select-timeout-ms"
value="1000">

max-simultaneous-calls
(tuning)

max-simultaneous-calls
is the maximum
number of
simultaneous calls that
can be placed by the
tool.

(Duration of a call * call
rate)* 1.2

<define
entity="traffic-param"
name="max-simultaneous-calls"
value="1000">
</define>

model-traffic-select Specifies which
distribution is selected
to create new
calls.Three different
types are
implemented:
-uniform : for each
interval, seagull tries to
reach the expected call
rate, regardless of
what happened during
the lastest interval.
With this value, the
max-receive and
max-send options are
automatically set.
-best-effort : seagull
tries to maintain the
expected average call
rate by adjusting the
instantaneous call rate
using the rates

best-effort <define
entity="traffic-param"
name="model-traffic-select"
value="best-effort">
</define>

Seagull - Core

Page 55
Copyright © 2006 HP OpenCall Software All rights reserved.

reached during the
previous intervals.
This is the default
value.
-poisson : the real call
rate varies around the
expected call rate
according to the
Poisson distribution

external-data-file File from which the
data are taken for the
external data
management.

external_data.csv <define
entity="traffic-param"
name="external-data-file"
value="external_data.csv">
</define>

external-data-select Defines the way the
data are extracted from
the external data file.
Value can be
sequential or random.

sequential <define
entity="traffic-param"
name="external-data-select"
value="sequential">
</define>

Table 1: List of traffic parameters (traffic-param entity)

13.2. Configuration parameters

For text protocol, it is possible to define configuration parameters. They are set in the configuration file and
the value of the parameter can be used in the scenario.
In the configuration file, the configuration parameters are defined:
<define entity="config-param" name="param_ip" value="127.0.0.1"></define>
<define entity="config-param" name="service" value="schooler"></define>

In the scenario, the value is restored in the message (example for SIP protocol):
<message>
<![CDATA[INVITE sip:$(service)@$(param_ip) SIP/2.0

Via: SIP/2.0/UDP north.east.isi.edu
From: Mark Handley <sip:mjh@isi.edu>
To: Eve Schooler <sip:schooler@caltech.edu>
Call-ID: 2963313058@north.east.isi.edu
CSeq: 1 INVITE
Subject: SIP will be discussed, too
Content-Type: application/sdp
Content-Length: 187]] >

</message>

(See "SIP first try (sip.html#first_try_param) " for a commented example)

13.3. Scenario reference

This section is the reference for Seagull scenarios.

This table is the list of commands that can be used in scenarios with their attributes.

Command Attribute(s) Description Example

<send> Send a message on a
transport channel

channel Refers to
"transport-channel"

channel="trans-ip-v4":
Use trans-ip-v4

Seagull - Core

Page 56
Copyright © 2006 HP OpenCall Software All rights reserved.

sip.html#first_try_param

entities, as defined in
the generic
configuration file.

channel.

label Optional. Refers to
correlation "command"
entities, as defined in
the correlation section.

label="command-1":
refers to the
"command-1".

<receive> Receive a message
on a transport

channel

channel Refers to
"transport-channel"
entities, as defined in
the generic
configuration file.

channel="trans-ip-v4":
Use trans-ip-v4
channel.

label Optional. Refers to
correlation "command"
entities, as defined in
the correlation section.

label="command-1":
refers to the
"command-1".

<wait-ms> Wait a number of
milliseconds before

continuing

value Number of
milliseconds to wait for.

<wait-ms
value="2000"></wait-ms>:
wait for 2 seconds

<counterdef> Define a counter

name Name of the counter name="client-id-counter"

init Initial value of the
counter

init="1"

min Optional. Minimal
value of the counter.
(Default value is 0)

min="0"

max Optional. Maximal
value of the counter.
The interpretation of
the value of this
attribute depends on
the platform and
corresponds to an
Unsigned long defined
in the file "limit.h".
If "max" is defined,
when the "max" value
is reached, the counter
is re-initialized to the
value defined by the
"behaviour" attribute.

max="100"

behaviour Optional. Possible
values of this attribute

behaviour="init"

Seagull - Core

Page 57
Copyright © 2006 HP OpenCall Software All rights reserved.

are:
"init" : when the "max"
value is reached, the
counter is re-initialized
to the "init" value,
"min" : when the "max"
value is reached, the
counter is re-initialized
to the "min" value,
"no_reset": when the
"max" value is
reached, the counter is
not re-initialized and
stays at the "max"
value.
(Default value is "min")

Table 1: List of scenario commands with their attributes

Seagull - Core

Page 58
Copyright © 2006 HP OpenCall Software All rights reserved.

This table is the list of actions that can be used in <send> or <receive> commands.

Action Attribute(s) Description Example

<open> 'open' action opens an
instance of the

transport channel. This
can be used for

example to open a new
TCP socket for each

call. Don't forget to use
'close' action at the
end of the scenario.

<open
args="mode=client;dest=10.10.11.157:8080"></open>

args Argument relevant to
the transport channel
used

mode=client;dest=10.10.11.157:8080

<close> Close a transport
channel

<close
name="channel-1"></close>

name Name of the channel to
be closed.

channel-1

<store> Store the value of a
protocol entity in a call

variable

<store name="sid"
entity="Session-Id">

</store>

name Name of the call
variable where to store
the protocol entity.

sid

entity Name of the protocol
entity to store. It can
be any protocol entity
(body or header).

Session-Id

instance Instance identifier of
the component to be
stored.

instance="InitialDP-data"

sub-entity Identifier of the
parameter of the
component to be
stored.

sub-entity="operation-code"

begin Position from which we
start to get the data.
Be careful, the count
for the position starts
at zero. Example for
the second position:

begin="1"

end Position at which we
stop to get the data. Be
careful, the count for
the position starts at
zero and the last piece
of injected data is at
the end position minus
one.

end="9"

Seagull - Core

Page 59
Copyright © 2006 HP OpenCall Software All rights reserved.

<restore> Restore the value of a
call variable in a

protocol entity (reverse
operation of "store")

<restore
name="sid"

entity="Session-Id"></restore>

name Name of the call
variable where to
restore from.

sid

entity Name of the protocol
entity to restore to.

Session-Id

instance Instance identifier of
the component to be
restored.

instance="InitialDP-data"

sub-entity Identifier of the
parameter of the
component to be
restored.

sub-entity="operation-code"

begin Position at which we
start to inject the data.
Be careful, the count
for the position starts
at zero. Example for
the second position:

begin="1"

end Position at which we
stop to inject the data.
Be careful, the count
for the position starts
at zero and the last
piece of injected data
is at the end position
minus one.

end="9"

<start-timer> Start the timer for
response time

statistics

-

<stop-timer> Stop the timer for
response time

statistics

-

<set-value> - Set the value of a
protocol entity given a

format

<set-value
name="Session-Id"

format=".;1096298391;$(session-counter)">
</set-value>

name Name of the protocol
entity to set

"Session-Id" set the
value of Session-Id
parameter

format The format is a string
that can contain call
variables (identified by
$(varname)).
If associated to the
"method" attribute, it is

".;1096298391;$(session-counter)":
fixed string with a
variable part (value of
"session-counter" call
variable)

Seagull - Core

Page 60
Copyright © 2006 HP OpenCall Software All rights reserved.

used to pass
parameters to the
method (refer to
Authentication for
further details).

method Optional. The method
refers to an
"external-method" of
the dictionary. It
defines the function to
encode the value.

"authentication"

message_part Optional and only if the
"method" attribute is
used. The
message_part defines
the part of the
message that is used
by the method to
encode the value.
Allowed values are :
"" (default value)
"body"
"header"
"all"

""

<set-bit> - Set the value of a bit in
a call variable (memory

zone). This is only
available for variables

of number or string
type. Value can only

be 0 or 1. The position
starts at 0 (second

position is 1).

<set-bit
name="call-variable"

entity="field-from-dictionary"
instance="InitialDP-data"
sub-entity="operation-code"

position="x"
value="y"></set-bit>

name Name of the call
variable where to store
the protocol entity.

sid

entity Name of the stored
protocol entity. Needed
to determine the type
of the call variable.

Session-Id

instance Instance identifier of
the component to be
stored.

instance="InitialDP-data"

sub-entity Identifier of the
parameter of the
component to be
stored.

sub-entity="operation-code"

position Position of the bit to be
changed. Position
starts at 0. Example for
the second position:

position="1"

Seagull - Core

Page 61
Copyright © 2006 HP OpenCall Software All rights reserved.

value New value of the bit.
Admitted values are 0
or 1.

value="0"

<set-value-bit> - Set the value of a bit in
a field of a message.
This is only available

for variables of number
or string type. Value

can only be 0 or 1. The
position starts at 0

(second position is 1).

<set-value-bit
entity="field-from-dictionary"

instance="InitialDP-data"
sub-entity="operation-code"

position="x"
value="y">

</set-value-bit>

entity Name of the stored
protocol entity. Needed
to determine the type
of the call variable.

Session-Id

instance Instance identifier of
the stored component.

instance="InitialDP-data"

sub-entity Identifier of the
parameter of the
stored component.

sub-entity="operation-code"

position Position of the bit to be
changed. Position
starts at 0. Example for
the second position:

position="1"

value New value of the bit.
Admitted values are 0
or 1.

value="0"

<setfield> - Set the value of a field
of a message. This is

only available for
external (header and

body fields) and binary
(header fields only)

protocols.

<setfield
name="field-from-dictionary"

value="XX"></setfield>

name Name of the protocol
field.

name="field-from-dictionary"

value Value of the field. value="XX"

<inc-counter> Increment a global
counter

<inc-counter
name="HbH-counter">

</inc-counter>

name Name of the global
counter to increment

"HbH-counter"
increment the value of
HbH-counter by 1

<inc-var> Increment a variable of
a call

<inc-var
name="INVOKE-ID">

</inc-var>

name Name of the call
variable to increment

"INVOKE-ID"
increment the value of

Seagull - Core

Page 62
Copyright © 2006 HP OpenCall Software All rights reserved.

INVOKE-ID by 1

<check-presence> Check that a protocol
entity is present

<check-presence
name="[FIELD_NAME]"

behaviour="error"></check-presence>

name Name of the protocol
entity to check

name="bar" for bar
field

behaviour Behaviour to adopt in
case the protocol entity
is missing. Can be
"error" or "warning"

behaviour="error"

instance Instance identifier of
the component to be
checked.

instance="InitialDP-data"

occurrence Optional (default is
1).Specifies the
position of the field,in
case of multiple
occurrences (used with
grouped AVPs in
diameter).

occurrence="1"

<check-value> Check the value of a
header field or of a
message paramater

<check-value
name="[FIELD_NAME]"

behaviour="error"></check-value>

name Name of the protocol
entity to check

name="bar" for bar
field

behaviour Behaviour to adopt in
case the value is not
the expected one. Can
be "error" or "warning"

behaviour="error"

instance Instance identifier of
the component to be
checked.

instance="InitialDP-data"

sub-entity Identifier of parameter
of the component to be
checked.

sub-entity="operation-code"

branch_on Specifies the received
message,on which the
scenario execution is
branched,to point
either ahead,or back in
the scenario.

branch_on="180"

look_ahead (default 1)Specifies the
number of jumps in
traffic section of the
scenario ahead.

look_ahead="2"

look_back (default 0).Specifies
the number of jumps in
traffic section of the

look_back="1"

Seagull - Core

Page 63
Copyright © 2006 HP OpenCall Software All rights reserved.

scenario backwards.

<check-order> Check the type of
message received at a

specified position

<check-order
name="[FIELD_NAME]"
behaviour="error"
position="[X]">
</check-order>

name Name of the message
to check

name="bar" for bar
message

behaviour Behaviour to adopt in
case the position is not
the one expected. Can
be "error" or "warning"

behaviour="error"

position Position at which the
message is awaited.
Be careful: positions
start at 0.

position="0"

<restore-from-external> Modify the value of a
field with data coming

from a file

<restore-from-external
field="1"

entity="Volume_requested">
</restore-from-external>

field The number of the
data field used, in the
data file

field="0" for the first
field

entity The field of the
message to which is
assigned the new
value

entity="Volume_requested"

sub-entity Identifier of component
parameter in which we
insert some data.

sub-entity="operation-data"

instance Instance identifier of
the component to be
checked.

instance="InitialDP-data"

begin Position at which we
start to inject the data.
Be careful, the count
for the positions start
at zero. Example for
the second position:

begin="1"

end Position at which we
stop to inject the data.
Be careful, the count
for the positions start
at zero, and the last
piece of data injected
is at end position
minus one.

end="9"

occurrence Optional (default is
1).Specifies the

occurrence="1"

Seagull - Core

Page 64
Copyright © 2006 HP OpenCall Software All rights reserved.

position of the field,in
case of multiple
occurrences (used with
grouped AVPs in
diameter).

<restore-from-external> Restore a value with
data coming from a file

into a call variable

<restore-from-external
name="call_variable"

field="1">
</restore-from-external>

name The field of the
message to which is
assigned the new
value

entity="Volume_requested"

field The number of the
data field used, in the
data file

field="0" for the first
field

<set-new-session-id> Change the value by
which a session

(scenario execution) is
identified. This allows

scenarios to be
executed with multiple

session-ids in one
scenario. See H248
(h248.html) for an

example.

<set-new-session-id
name="TID"

entity="transaction-id"></set-new-session-id>

name Value that was used to
identify the session
(can be a variable that
was stored or a
counter).

name="TID"

entity New value to use to
identify the session
(like the value of a
protocol field)

name="transaction-id"

<transport-option> Change the mode from
no secure to secure

transport during
execution. A "wait-ms"
(with value="1000" at

least) command is
needed after this

action to let systems
synchronize the secure

mode.

<transport-option
channel="channel-1"

value="secure-mode"></transport-option>

channel Value that was used to
identify the channel.

channel="channel-1"

value "secure-mode"
indicates that the mode
will change to secure
(the only agreed

value="secure-mode"

Seagull - Core

Page 65
Copyright © 2006 HP OpenCall Software All rights reserved.

h248.html

value).

<insert-in-map> Specific to
"Correlation" feature. It

inserts in the list of
known session-ids for

the given "channel" the
value of the "entity"

(that is defined in the
dictionary).

<insert-in-map
channel="channel-1"

entity="HbH-id"></insert-in-map>

channel Value that was used to
identify the channel.

channel="channel-1"

entity Add the value of the
"entity" to te map of
known session-ids.

<log> Add a user comments
in the log file (with the

possibility to dump
variables, stored with
the "store" action, and
counters). To activate
user logs, the "U" log
level is needed in the

command line.

<log format="User
log, call-id=
$(SID)"></log>

format User comment to be
added to the log file.

format="User log,
call-id= $(SID)"

Table 2: List of actions

13.4. Command line arguments
$ seagull -help
seagull Command syntax
-conf <configuration file name>
-scen <scenario file name>
-dico <protocol dictionary file name> can be used more than once
[-log <logging file name>]
[-llevel <logging level mask>] levels:

M: msg, B: buffer, E: error,
W: warning, N: no error, T: traffic error,
V: Verdict, U: User, A: all. Default E

[-help] display syntax command line
[-bg] background mode
[-notimelog] no time stamp on the log (default time stamp)
[-msgcheck] check the field of the messages received (default no check)

13.5. Seagull return code

Seagull returns a global status of the calls through the return code:

• 0 : ok, seagull did not meet any problems and all calls finished well.
• -1 : fatal error, seagull met a fatal error and stopped.
• >1 : error, at least, one call failed ("Ignored" calls are not considered as failed; the init section is

concidered as a independant call).

14. Miscellaneous tools

Seagull - Core

Page 66
Copyright © 2006 HP OpenCall Software All rights reserved.

When working with Seagull, there are some useful and complementary tools:

• Wireshark (http://www.wireshark.org/) : formerly known as "Ethereal", Wireshark is a protocol decoder.
It will most likely decode all the protocols supported by Seagull.

• Visual REGEXP (http://laurent.riesterer.free.fr/regexp/) : this invaluable tool can be used to debug
regular expressions (widely used in Seagull!).

Seagull - Core

Page 67
Copyright © 2006 HP OpenCall Software All rights reserved.

http://www.wireshark.org/
http://laurent.riesterer.free.fr/regexp/

	1 Installation
	1.1 Platforms supported
	1.2 Installing Octave
	1.3 Compiling Seagull from source code
	1.4 Installing Seagull
	1.5 Uninstalling Seagull
	1.6 Upgrading Seagull

	2 Using Seagull
	2.1 Traffic profile
	2.2 Controlling Seagull
	2.2.1 Keyboard control
	2.2.2 Remote control
	2.2.2.1 Description
	2.2.2.2 Control commands

	2.2.3 Posix signal control

	2.3 Navigating through the screens

	3 Concepts and definitions
	3.1 Scenario
	3.2 Session-Id
	3.3 Transport protocols and channels
	3.4 SCTP transport
	3.5 Multi-channels
	3.6 Traffic Models

	4 Seagull scenario
	4.1 Scenario sections
	4.1.1 Counter section
	4.1.2 Correlation section
	4.1.3 Init section
	4.1.4 Default section
	4.1.5 Abort section
	4.1.6 Traffic section

	4.2 Actions in scenarios
	4.3 Call variables
	4.4 Counters
	4.5 Store and restore of protocol parameters

	5 Message and parameters control
	5.1 Enabling and disabling controls
	5.2 Behaviour when a control fails
	5.3 Presence check
	5.4 Parameter value check
	5.5 Message order check

	6 External data management
	6.1 Description
	6.2 Example

	7 Authentication
	8 Statistics
	8.1 Global statistics
	8.2 Response time statistics
	8.3 Protocol statistics
	8.4 Scenario statistics
	8.5 Getting statistics out of response time raw data

	9 Logs and traces
	10 Configuration files
	10.1 Generic configuration
	10.2 Protocol dictionary
	10.2.1 Protocol
	10.2.2 Types
	10.2.3 Header
	10.2.4 Body
	10.2.5 body-method
	10.2.6 external-method
	10.2.7 Dictionary

	11 Correlation
	11.1 Correlation with open id feature

	12 Getting support
	13 Reference
	13.1 Generic configuration reference
	13.1.1 Transport configuration
	13.1.2 Generic configuration

	13.2 Configuration parameters
	13.3 Scenario reference
	13.4 Command line arguments
	13.5 Seagull return code

	14 Miscellaneous tools

