Seagull - Core

Table of contents

10 = = o OSSR 4
1.1 PlatfOrmS SUPPOITEQ. ..ottt sttt e e et e e e e s seeteeneesseenseeneesseeseeneenneensenn 4
1.2 INSEAIING OCLAVE......c.eiieectieieeie ettt bttt b et e bbbt st e e et et e ebeebesbeeneeneenn s 4
1.3 Compiling Seagull from SOUICE COUE..........ccuiiiiriieieeiee ettt e e b 4
1.4 INSEAIIING SEAGUIL.......eeeeeee ettt et e bt et e et e sreenbe et e neebeeneenes 5
L5 UNINSLAIING SEAGUIL........eeceeeeee e e b e saa e et e e s aeeenre e sneeereeanes 6
L oo =" (1 aTe == [PR 6

2 USING SEAGUIL ...ttt ettt e b e et et et e e s e e e ae e aeeneenre e teeneeeae e et eneenreerenneens 7
2 I Lo o o | =PTSRS 7
2.2 CoNtroHliNg SEAGUIL ...ttt e bbbt et nenn e ne e 8

2.2.1 KEYDOAI CONLIOL........eiiieieieesie ettt ettt b et e e sbe et e s neesbeeneesneenreenes 8
2.2.2 REMOLE COMLIOL........eeiuiiitieiteeie sttt sttt be bt s b et e s e s b et e s ae e s b e et e e aeenbeentesaeesbeenbeeneenbeas 11
2.2.3 POSIX SIGNAI COMNLIOL........eeiieeieiiesie ettt a e et e e e te e e e s seeseeseesseensesseesneenseennensens 12
2.3 Navigating through the SCrEENS...........oci et nr e e e reees 12

3 CONCEPLS ANA AEFINITIONS.......eeeieieerieet ettt bbbt se et e b e b et e sbesbenbeeneenneneas 13
T TS0 = o PSR 13
sSSP 13
3.3 Transport protocols and CRANNEIS..........ccuiiiii e 14
S O o (=01 oo | TSP SPPR 16
35 MUII-CRENNEIS.......coeee bbb b e bbbttt nn e b e nne e 16
R I = T 1Y 00 [RSSO 16

4 SEAGUIL SCENEITO.....ceeeeeieeie ettt et e b bbbt e e e e e e e et bt e R e e b e e bt e s e e se e e e e e re e b e nb e bt neeeneeneens 19
4.1 SCONAIO SECLIONS.. . euteiueitieieeteesteeteseesteesteaseesbeesbesseesseeseesseaseesbeeaeesseesbeeaeeaseesbeenbesaeesseanseeneenbenneenneenns 19

R o U0 = = ot i o] o USSP 19
B A Oe = = (0] g R ot (o] o ISP 20
T B g 1 0= o o) o USSP 20
L T = 1 S 1 o SRR 20
TN oo 0 o1 o S SSSRSSS 21
I R I = o= ok o o OSSR 21

4.2 ACHIONS 1N SCENAITOS....cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeseeeeeeseeseeeeeseaeeseeaeeeaeeaeeeeeeeeaeeeeeaeeeeeeaeeneeeeeeeeeeeeeeenenees 21

Seagull - Core

A3 Call VAITAIDIES. ... ettt b bbb enes 22
@0 (= USRI 22
4.5 Store and restore Of ProtOCOl PArBMELENS..........ocueiiiiririe e ere e 22
5 Message and Parameters CONEIOL........couiiiieiie et e e re e e e e s re e e aeesreeenreens 23
5.1 Enabling and disabling CONLIOIS.........ccuciiiieiiee ettt et sreeneeneens 23
5.2 Behaviour When a Control failS..........cooiiiiiiiniiee et 24
5.3 PIESENCE CNECK...... ettt bbbttt et bbbt bt e st et et e e et e e b 25
5.4 ParamELEr VAU CNECK......ccueeieieieieiestie sttt e sttt esse e s e s teeneesseesseensesseesseentesseesseensenneenseenes 25
5.5 MESSATE OrdEr CNECK. ...t bbbt e e nenne 26
6 EXternal data Man@QemIENT............cooiiiie it e et e et e e a e e e b e e ere e e pe e nre e e reenneeereen 27
L3I =S ok 1)1 o TS 27
LS = 0= S 28
A AN 1141 11T o] o OSSR SS PR OTPR PRSPPSO 29
S | S 0SSR 30
S 0] 0= IS o SR 30
8.2 RESPONSE LIME SLALISLICS. .. e iveeitie ettt ettt sb e e s b e et e e s ae e s s e e sseeeateeabeessteesreesaneeneeenns 31
eI o 0 (0o 0] IS [(oSSR 34
8.4 SCENAIO SEALISLICS....veverveeveeuieseesie e st sttt sttt se et st b et be s be e s e e st e st e e et e benbesbesbe e bt eseeneene e s e benbenbenbens 34
8.5 Getting statistics out Of reSPONSE tIME FaW AaLA...........ceeeeieeie e 35
O L OGS BNO TFBCES.......eueieeteteeteett ettt sttt b st e e e et e e e s be b e eh e eh e e s e e ae e e e e e s e benbeeb e e bt eseene e e e s e e e nnenbeas 38
10 CONFIGUIBETON THIES.......eeeee bbbt e et e sn e bbb b s s 38
(Lo T aTc g Lol o] 1Ko [N = 1 Lo o FO SRS 38
0T = o (o lore] Io [Yoxt o= Y20 39
10.2.1 PIOTOCOL. ...ttt bbbt bt he et e e et e st e e b bt bt e bt et e e et et et e nbenbenbeens 40
02 Y/ o< PSPPSR 40
0 I o 1= [S 40
020 = T o | SR 42
10.2.5 DOAY-MELNOM. ..o ettt e e b e s e e e be e saee e be e snee e reesneeenns 42
10.2.6 €XLEINAI-MELNO.........oiiiieie e st e et e ae e 42
0T ok i o = USRS 43
0ol £= = 1o o RSSO 43
11.1 Correlation With OpEN i FEALUIE..........coiieeeeee e 46
12 GELING SUPPONT. ...ttt ettt eie ettt bt ese st e e e e e s e se b e ab e eb e e et ehe e e e e e e e b e eEeeh e eb e eheeas e s e s e e e nnenbenneene e 46
T L = 1= 0o TR 46
13.1 Generic CONfigUIation FEFEIENCE..........ccuvcee et et esr e te e e sre e e e 47
13.1.1 TranSPOrt CONFIQUIBLION.cuiieeiteeieeeeseesie et e st e e eeste et esse e teeseesseesseesseeseenseeneesreesseensesneesens 47

Page 2

Seagull - Core

TR TS o1 f ol oo g1 {0 (U= 1 o o S 50
13.2 CONfiQUIatiON PAIAIMELEIS........eiueeeetesterie sttt ettt b et i et e e s e s e b sb e bt eb e e st e e e s e e e st e s besbeeneene e 56
13.3 SCENANO FEFEIBINICE. ... eeii ettt sttt ettt e e e et e s bt ebeeaeesheenteemeesae e beentesreenteensesneenaenneas 56
13.4 CoMMANA [INE @IQUIMENTS.......ccuiiiiee e citie ettt et e et e e e s ae e e e e e sbeeeateeaseeesseesseesnseesneesnreenns 66
ICERS== o 0 = (0 1o [SR 66

14 MISCEIIANEOUS TOOIS.......eeeeeieieeiee ettt bbbttt bbb bbbttt et et e nbe e nnas 66

Page 3

Seagull - Core

Muhr pro s :l.":'.i: Tanerator
LIngtallation
—
Linux: Seagull supports Linux. It has been successfully tested with Debian, RedHat Advanced Server
2.1, RedHat Enterprise Linux 3.0, Suse 9.3 and Fedora core 3. It should be no problem for Seagull to
work on other Linux platforms by compiling Seagull from the sources.
HPUX 11i (PA-RISC and |A64): supported.
« HPUX 11.23 (PA-RISC and 1A64): supported.

Windows/cygwin: supported, only for IP-based protocols (for functional testing and limited load
testing).

For TCAP support in Seagull, HP OpenCall SS7 (http://www.hp.com/go/opencall/) is a pre-requisite, so an HP OpenCall SS7 compliant platform
must be used.

Seagull relies on "Octave (http://www.octave.org/) " to analyze detailed statistics and to provide plotting
capability.

Installing Octave is optiona (Seagull runs properly without it). Statistics can also be computed from within Excel, but there are many limitations
(mainly file size) by doing so.

There are 3 optionsto install Octave:

« If youinstalled your system using CD/DVDs: locate the Octave packages and install them.

« Download Octave for your distribution (using urpmi or apt tools).

e OnaWindows PC, install "Cygwin (http://www.cygwin.com/) " and install Octave during Cygwin
installation.

If the binary package is not available on your platform or if you want to modify Seagull source code to add
you own features, you will need to compile Seagull from the source code.

Decompress the source code tarball:

Page 4

http://www.hp.com/go/opencall/
http://www.octave.org/
http://www.cygwin.com/

Seagull - Core

Thiswill create adirectory called seagul | . Go to this directory and edit "build.conf"” file to add or remove
sections you want to include during compilation time. To compile seagull:

Executables are located in bin/. Copy them in /usr/local/bin and you should be ready to go.

To compile Seagull from the source on CY GWIN, you need to install CY GWIN and the following packages: shell/pdksh (Public Domain KSH),

devel/gcc-g++, devel/make, devel/bison, devel/flex, vi

First, unzip and untar the Seagull archive file that corresponds to your platform:

Then, use the package installer of your platform:
HPUX 11i/11.23:

Linux RedHat-new and Fedora core 3 install:

Linux Debian:

Cygwin: user auto-extractible executable under Windows.

Page 5

Seagull - Core

Oncetheinstalation is done, the following directories are available:

For versions older than 1.8.0.1 , please replace "opt" by "/usr/local/share”

« /opt/seagull/seagull/doc directory contains the documentation for all the protocols.

« /opt/seagull/[protocol]/doc directory contains protocol documentation.

» /opt/seagull/[protocol]/config directory containsthe XML configuration files, as described in the
"Configuration files' section, and the dictionaries, as described in the "Protocol dictionaries’ section.

» /opt/seagull/[protocol]/logs directory isempty. It is meant to contain execution log files.

» /opt/seagull/[protocol]/run directory contains examples of shell scriptsto run the client and server to
execute your scenarios.

« /opt/seagull/[protocol]/scenario directory contains the example scenarios.

Thefiles present in those directories are given as simple examples. It is highly recommended to not modify them, as they will be overwritten if you
upgrade Seagull. Instead, create your own environment by copying /opt/seagull/[protocol]/ directory tree to your home directory.

The installation also creates the following files in the bin directory:

/usr/local/bin directory contains the binaries of Seagull. Make sure that this directory isin your user path by
typing

If Seagull can't be found, type:

To remove Seagull from your system:

On HPUX 11i/11.23, use swremove command.
On Linux with rpm packager

» find thelist of packagesto remove:

* Remove al the packages given by the previous command:

On cygwin, use the Windows uninstaller.

To upgrade from a previous version of Seagull:

Seagull - Core

« OnHPUX 11i/11.23, follow uninstall procedure and then install procedure.
e On Linux with rpm packager:

« Oncygwin, follow the install procedure.

The traffic profileis the evolution over time of the number of scenario attempts per second (call rate). By
default, the traffic profile is constant, meaning that you set the rate at x, and it will remain x until you quit
Seagull. Y ou can change the rate of scenario attempts interactively using the keyboard or using the remote
control interface.

A simple Perl script (ctrl.pl

(http://gull.svn.sourceforge.net/viewvc/gull/seagull /trunk/src/tool -ctrl/ctrl . pl view=markup)) is provided
with Seagull to demonstrate the capabilities of the remote control interface as well as providing away to
create arepeatable traffic profile.

ctrl.pl (http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool -ctrl/ctrl.pl view=markup) takes two
arguments: Seagull's remote control address (as specified on the controlled Seagull through "-ctrl IP:PORT"
command line option) and the traffic profile scenario to execute.

A sample scenario (scenario.txt) is also provided:

This scenario sets the rate to 20 scenario attempts per second, waits 2 seconds (thisis done at ctrl.pl level,
not at Seagull level), dumps the counters, waits another 2 seconds, dumps the counters again, sets the rate to
40 scenario attempts per second, and so on. It creates the following traffic profile:

ctrl.pl is an example of the remote control interface. If you modify ctrl.pl to add more features, we would appreciate that you post your findings back
to Seagull users mailing list (http:/lists.sourceforge.net/listg/listinfo/gull-users) .

Page 7

http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup
http://gull.svn.sourceforge.net/viewvc/gull/seagull/trunk/src/tool-ctrl/ctrl.pl?view=markup
http://lists.sourceforge.net/lists/listinfo/gull-users

Seagull - Core

Seagull can be controlled in three ways:

« Interactively: using the keyboard attached to the terminal running Seagull
« Remotely: using the http server embedded in Seagulll
« Posix signas: using Posix signalsto stop the traffic

Seagull can be controlled interactively using the keyboard. As there are many keys available to control
Seagull, you can press"h" at any time to see the keys available and their function:

Notice that all the lines after "h : Help screen” are optional. In our example they appear because the protocol
statistics (seeline "3 : Protocol octcap-itu screen(s)") and the scenario statistics (lines from A to E) have
been turned on.

In case there is not enough space on the screen to display all the optional lines, you have to press the h key again to display the end of the help list.

Description of the keyboard controls:

+ Increase the call rate This key allows to increase the
call rate from the call-rate-scale
value. The default value of the
call-rate-scale is 1.

Usable only in client mode. It
has no effect in server mode.

Page 8

Seagull - Core

Decrease the call rate

Command

Stop the traffic and quit the tool

Pause/Restart the traffic

Burst traffic (only available in
client mode)

This key allows to decrease the
call rate from the call-rate-scale
value. The default value of the
call-rate-scale is 1.

Usable only in client mode. It
has no effect in server mode.

This key allows to change any
parameter in the configuration
during traffic.

For example:

* press 'c', then 'set call-rate 10’
to change the value of the call
rate to 10.

* press 'c', then 'set
call-rate-scale 5' to change the
value of the call-rate-scale to 5.
Usable only in client mode. It
has no effect in server mode.

In server mode, Seagull does
not accept any new incoming
call. Once all ongoing calls are
finished, the tool exits.

In client mode, Seagull does
not place any new call. Once all
ongoing calls are finished,
Seagull exits

Pressing the g/ctrl-C key a
second time forces Seagull to
quit, even if all ongoing calls
are not finished.

In server mode, Seagull does
not accept any new incoming
call. Current calls continue.

In client mode, Seagull does
not place any new call.
Ongoing calls are processed
normally.

By pressing p key a second
time, seagull will restart traffic.
In server mode, Seagull
accepts again new incoming
call.

In client mode, Seagull
smoothly restarts the traffic, to
go back to the required call
rate.

Once the traffic is paused,
restart traffic.

In client mode, Seagull will try
to create all missed calls during
the pause (for example, for a
5s pause with a 10c/s call rate,
seagull will try to start
5*10=500 calls when the "b"
key is pressed).

Page 9

Numbers above or equal to 3

Force without init

Reset cumulative counters for
each statistics set in config file

Display the main statistics
screen

Display the response time
screen

Activate/deactivate the
percentage computation

Show the help screen

Show protocol statistics screen

Uppercase letters (starting with = Show scenario section

A)

statistics

Seagull - Core

This key allows to jump directly
to the "traffic" section of a
scenario, without waiting for the
"init" section to be completed.

Reset the counters. This option
is available only if log-stat,
log-protocol, display-protocol or
display-scenario statistics
options are set in the
configuration file.

Display the main screen with
the general statistics. Press "1"
again to display the statistics
per scenario.

The second column gives the
percentage of the calls for each
response time range, if the
percentages are activated (see
'a’ key). This screen is relevant
only if you set the proper
options in the configuration files
and if you set the start and stop
of the timer in the scenario (see
the statistics chapter).

This key activates or
deactivates the computation of
the percentages of the
response times screen, only if
the log-stat is set in the
configuration file and if you set
the start and stop of the timer in
the scenario (see the statistics
chapter).

Press on h to show the help
screen.

If you see "Next screen: press
the same key", press h again to
see the second help screen.

If you asked for statistics at the
protocol level, you can reach
the corresponding screen by
pressing the corresponding
number.

3 is for the first protocol, 4 for
the second one, 5 for the third
one, and so on for all the
protocols used.

The possible values go from 3
to 0, so there are a maximum
of 8 protocol statistics screens.

If you asked for statistics at the
scenario level, you can reach
the corresponding screen by

Page 10

Seagull - Core

pressing the corresponding
letter.

A is for the first section in the
scenario, B for the second one,
C for the third one, and so on
for all the sections used in your
scenario.

The number of scenario section
statistics screens is limited to
26.

Table 1. Control keys

Seagull can be remotely controlled through a remote connection using the HTML protocol and a dictionary
that is provided at run time (-ctrldicopath command line option), the default being
/opt/seagull/config/remote-ctrl.xml.(/usr/local/share/seagull/config/remote-ctrl.xml for versions before
1.8.0.1)

Thisfeature is activated with arun time option : -ctrl address:port ("address.port” : the address and the port
on which seagull listens for remote control commands)

Using HTTP makes it very easy to remotely control Seagull, either directly from a browser or from higher
level languages like Perl or Python.

In particular, this alows to:

Control acluster of Seagull instances (hosted on one or several systems)

Control the traffic profile over time (see the example with ctrl.pl Perl script)

Automate benchmark test sessions

Easily create a Graphical User Interface for Seagull control and monitoring (through http, AJAX, Eclipse
plugin, ...)

Create real time graphs with Seagull statistics (dump command)

The following configurations are possible:

The following remote control commands are implemented:

Dump: to dump the statistics counters. Thisis done by sendingan HTTP "GET" with URI:

http://x.y.z.t:p/seagull/counters/all . . .
Set rate: to set the rate of scenario attempts per second. Thisis done by sending an HTTP "PUT" with

URI:

http://x.y.z.t:p/seagul | /comand/rate?value=sn
Ramp: to linearly increase or decrease the rate of scenario attempts per second, from the current value to

atarget value in anumber of seconds.
Thisis done by sending an HTTP "PUT" with URI:

Stop: to seagull to quit . Thisisdone by sending an HTTP "PUT" with URI:

Pause: to seagull to pause/restart the traffic. Thisis done by sending an HT TP "PUT" with URI:

Burst: tog seagu” to m&eagurst w”en t”etrgilc IS paug %agu” WI|| try to createm mlg Cg|8

Page 11

Seagull - Core

during the pause (only for client).
Thisis done by sending an HTTP "PUT" with URI:

It is also possible to stop the traffic using POSIX signals. Thisis especially useful when running Seagull in
background mode (- bg option, see the command line help).

kill -SIGQUSRL pi d hasthe same effect asthe'q key. You can force the traffic to stop by issuing a
secondki | I -SI GUSRL pid.

Hereis the screen that you see when you launch Seagull:

In order to see the screens clearly, you are advised to launch Seagull in aterminal with at least the following geometry: 25 lines and 80 columns.

At the bottom left, there is an invitation to press 1. Pressing the 1 key will get you to the following screen,
that displays the number of successfull occurences of each types of scenarios (init, traffic, default and abort):

Page 12

Seagull - Core

Press 1 again to come back to the first screen.

All the screensin Seagull follow the same logic: if al the information cannot be displayed on one screen you'll have to press the same key once again
to display the rest of the information.

A scenario iswhat gets executed by Seagull. Composed of multiple sections, each section is a sequence of
commands, described in XML. Within a scenario section, <send> and <receive> commands are used to send
and receive protocol messages.

The Session-1d is ageneric concept in Seagull. Under classical usage, session-ids are not seen by the user. It
can become handy to understand what a session-id is.

A Session-1d maps to one or several protocol fields. How the mapping is doneisindicated in the dictionary.
For example, in Diameter, the session-id maps to Diameter's Session-1d avp. In H248, session-id maps to
H.248's transaction-id.

A session-id isvalid for achannel. Thus, a scenario that makes use of multiple channels will have multiple
session-ids.

Let's take the example of a scenario which uses one channel. The scenario is the following:

Page 13

Seagull - Core

In some cases, the session-id value is not in a unique field and may need to be found in other fields. To
resolve this, multiple out-of-session-id fields can be defined in the dictionary. If amessage is received with
no session-id field or with an unknow value in the session-id field, then seagull looks for the first
out-of-session-id field if defined. If thisfirst out-of-session-id field is not present or its value is unknown,
seagull looks for the second out-of-session-id field if defined and so on ... The most probable
out-of-session-id field must be placed at the top of the list of out-of-session-id fields in the dictionary to

optimize the execution.

When amessage is received and cannot be matched to a known session-id value (whether this value was
related to the session-id field or one of the defined out-of-session-id fields), then it is treated as a "new

(incoming) call”.
33.Transport protocolsand channels -~

Page 14

Seagull - Core

Seagull messages are sent/received using a transport protocol. Several transport protocols can be used: TCP,
UDP or SCTP, all three over IPv4 or 1Pv6. In addition, HP OpenCall SS7 (http://www.hp.com/go/opencall/)
can be used to provide TCAP over SS7 transport. See TCAP (octcap.html) documentation for more details.

You first have to define the transport to use. Thisis done in the generic configuration file (see example
below). Then you can open channels for the transport that you have defined. Y ou can open one or severa
channels. Each channel can be on the same or on different transports, and can use the same or a different
protocol.

A channel makes the link between a transport and a protocol.

i A channel defined as server has to be opened as the FIRST channel. To open more than one channel as server, the "correlation feature” must be used. |

Transport and channels are defined in the generic configuration file

Here are some examples:
e Exampleusing TCP over IPv4:

» Exampleusing TCP over IPv6:

e Exampleusing TLS over [Pv4:

Page 15

http://www.hp.com/go/opencall/
octcap.html

Seagull - Core

« Exampleusing SCTP over TCP:

For more details, see "Transport Configuration”.

Seagull supports SCTP transport with SCTP library in version 1.5 and SCTP Socket api library in version
1.9.0 (refer to www.sctp.de (http://www.sctp.de/sctp-download.html)).

Seagull only supports SCTP over TCP transport on linux platform.

"Root" privileges are something needed to execute Seagull with SCTP transport.

Seagull supports several channelsin one single scenario. This means that you can create a scenario that for
example sends a message on channel 1, receives the answer on channel 1, then sends a message on channel
2 and receives the answer on channel 2.

Following the session-id principles, multi-channel scenarios can become complex. For example, to define a scenario where the first command isa
message sent on channel-1 and the second command is a message received on channel-2, the "correlation feature” must be used.

Seagull generates traffic using different model types:

Uniform : for each interval, seagull tries to reach the expected call rate, regardless of what
happened during the last interval. With this value, the max-receive and max-send options are
automatically set. It is not recommended for a low call rate. To reach a high call rate, it is

Page 16

http://www.sctp.de/sctp-download.html

Seagull - Core

necessary to increase the call-rate slowly (with the keyboard control or the remote control) to avoid
a burst phenomenon.
Example of traffic generated for:

1 call/s
=5
|]]]] | I:I
10.0s 15.0s
10 calls/s
— 10
M,
I]] |] | I:I
10.0s 15.0s
100 calls/s

| | | | | | | | 0
10.0s 15.0s
Best-effort: seagull tries to maintain the expected average call rate by adjusting the instantaneous
call rate using the rates reached during the previous intervals

Example of traffic generated for:
1 call/s

Page 17

Seagull

=
A A A A A AL,
10.0s 15.0s
10 calls/s
— 10
I]] |] | I:I
10.0s 15.05
100 calls/s
— S o
1]

|]]] 1 |
10.0s 15.0s
Poisson: the real call rate varies around the expected call rate according to the Poisson
distribution
Example of traffic generated for:
1 call/s

10.0s 15.0=s

10 calls/s

- Core

Page 18

Seagull - Core

100 calls/s

|] 1] 1 I I:I
10.0s 15.0%
This parameter is set in the configuration file of the client.

For more details, see " Generic configuration".

A scenario describes the messages exchanged during traffic and their parameters. It contains several
sections:

Page 19

Seagull - Core

The counter section contains alist of counters that are available during the traffic. Thisis useful, for
example, to handle session-ids (the name varies depending on the protocol) which are used to identify calls

in Seagull.

For example, the following code declares 3 counters: HbH-counter (initial value: 1000), EtE-counter (initial
value: 2000) and session-counter (initial value: 0).

Those counters can then be used in the scenario using the inc-counter and set-val ue scenario actions (see

scenario actions section).

The correlation section is used to define rules to associate several session-idsto asingle call. It supports
scenario that use one or multiple channels.

Refer to the "Correlation” section for further details.

The init section is executed once, at the time the connection is setup (before any traffic). Thiscan beina
server type or in aclient type scenario.

This section can be used as a pre-amble to the traffic (like CER/CEA exchange for Diameter protocol).

The list of scenario commands that can be included in this section is described in the scenario command
section.

The default section is executed when an unexpected message (not listed in the traffic section) is received.
This can be a server type or aclient type scenario.

There can be as many default sections as needed. Seagull tries to match the received message against the
first message of the default section.

The default section is generally used to create defensive scenarios, so that Seagull can react when stress
situations from the system under test are encountered.

By default, Seagull counts calls using a"default” scenario section as successful calls. Y ou can choose to
count them asfailed calls or ssmply ignore them. To do so, you heed to add a"behavi our " attribute to the
default section. Values of the behaviour attribute can be either "ignore” or "failed". Example:

The list of scenario commands that can be included in this section is described in the scenario command
section.

Page 20

Seagull - Core

The abort section is executed to finish a call when something wrong happened. The first command hasto be
a<send>

The list of scenario commands that can be included in this section is described in the scenario command
section.

Thetraffic section isthe main traffic. This can be in a server type or in a client type scenario.

The list of scenario commands that can be included in this section is described in the scenario command
section.

When "init" and "traffic" are both present, Seagull only supports same nature sections:
if the "init" section starts with a"send" command, the "traffic" section must start with a*send" command,
if the"init" section starts with a"receive" command, the "traffic" section must start with a"'receive’ command.

The <send> and <receive> scenario commands can include <action> and <message> sections.

"message” depends on the protocol. Thisis"command" for Diameter, "primitive" for TCAP, ...

The <action> section can be placed before and/or after the <message> section.

Actions placed before the message (called "pre-actions') are executed just before the message is actually
sent or received. Actions placed after the message (called "post-actions') are executed just after the
message is sent or received.

There are many actions available. To name afew, you can increment call variables, start or stop atimer,
store a parameter from an incoming message or re-inject it in an outgoing message, do controls on the
message or inject values from an external datafile. Click there to see the complete list.

Actions that can be placed befor e a message are actions to increment a counter before sending the message.
Example:

Page 21

Seagull - Core

Actions that can be placed after a message are actions to store parameter values after the message has been
received. Example:

Thelist of possible actions is available in the reference section. All actions can be pre- or post-actions.

In order to have dynamical scenarios, Seagull has "call variables'. Those variables are local to each call
(each instance of the scenario) except for the counters which are global to the seagull instance.

Hereiswhat is possible to do with call variables:

Set the value of a protocol entity by using the set-value action.

Increment a call variable within acall by using the inc-var action.

Retrieve the value of a protocol entity in acall variable by using the store action.

Put the value of acall variablein a protocol entity by using the restore action. In particular, thisis how
Diameter Hop-by-hop I1d and End-To-End Id can be handled.

In order to have unique identifier for a seagull instance, Seagull has "counters'. Those counters are as global
variables to the seagull instance.

Hereiswhat is possible to do with counters:

« Set the value of a protocol entity by using the set-value action.
« Increment acall counter by using the inc-counter action.
Put the value of acall variablein a protocol entity by using the restore action.

Some of the most useful actions are the store and restore actions. In the following example, we will explain
how to use the store and restore actions for 3 protocols. SIP (text), Diameter (binary) and TCAP (api).

A store action is generally executed as a post-action, while arestore action is generally executed as a pre-action.

« SIP(text). There are several waysto use the store action for atext protocol:
* You want the entirevalue of a protocol field: in this case, the store action can simply be used as:

Thevariable"MYVAR" contains the value of the Via header field.
Similarly, the Via header value can be restored using:

which will put the value of "MYVAR" in the Via header field (as declared in the dictionary).
* You want part of the value of a protocol field, using aregular expression: in this case, the store
action can include aregular expression:

Seagull - Core

Inthe SIP via

Thevariable"MYVAR" contains the value of the branc
Similarly, the Via branch value can be restored using:

which will put the value of "MYVAR" In the via-branc er fi It will need to be declared in
the dictionary).

Diameter (binary): in abinary protocol, store and restore actions can be done using directly the fields
declared in the XML dictionary, like this:

P
<restore name="MVAR' entity="via"></restore> ...
Fﬂ_

OCTCAP (API): to store and restore fields, you must identify which field you want to store and restore
likethis:

store and restore actions on Diameter Grouped AV Ps are supported by version 1.8.0 onwards

Note that begin and end attributes are used to extract part of the operation-data (like correlation-id or
called party number). Same for the restore:

Thiswill set the value of the operation-datafi starting octet 9, ending octet 14) in the
TC_CONTINUE named "ApplyCharging-data’ with the content of "MYVAR".

Asinit section and traffic section are hold as different calls, do not store avalue in the init section to restore it in the traffic section.

The "store" action on an unavailable field will make the call to be marked as failed. ‘

Even if Seagull isaimed at traffic, load and stress testing, it is possible to check messages and parameters
during traffic.

i The more controls you put, the less traffic Seagull can handle. |

Several levels of control are available and described in the following sections.

Controls can be enabled at two different levels:

Page 23

Seagull - Core

Globally, in the generic configuration file.
Globally, using - negcheck parameter in the command line.
Per message, in the scenario file, in a post-action section of a message:

Y ou can specify the behaviour of Seagull for the different controls. This behaviour can be defined at the
control level (see examplesin the following chapters) or globally. The rest of this section presents the ways
to define a global behaviour.

Definein the XML configuration file "Warning" as the global behaviour when a control fails:

Definein the XML configuration file "Error and abort" as the global behaviour when a control fails:

The global behaviour is applied for al controls that do not have their behaviour attribute defined in the
scenario.

If the control is OK, the scenario goes on. If the control fails, the behaviour is:

« Logawarning and continue the call
e Loganerror and abort the call

Page 24

Seagull - Core

The goal of this control isto check for the presence of parameters as described in the scenario. There are two
types of presence check:

« Presence: Seagull checksthat at least the parameters listed in the scenario are present in the received
message. |f additional parameters are present, the call is still considered OK. But if any expected
parameter is missing, then the control fails.

« Additional: Seagull checksthat all and only the parameters listed in the scenario are present in the
received message. If additional parameters are present, the call is considered failed. If any expected
parameter is missing, then the specified behaviour is applied.

The type of presence check is set in the generic configuration file:
« Toenable"Presence" check in the generic configuration file:

Example for Diameter protocol:

} "command" is specific to Diameter. It should be replaced by the appropriate keyword depending on the protocol (

The check must be defined in the post-action section of the <receive> scenario command.

"branch_on" featureis only present for seagull version 1.8.1, onwards

Seagull can also perform controls on the value of the fields (of the header or the body) of a message.

Those controls are defined in the scenarios.

In general, the control is done against the value indicated in the scenario.

Page 25

Seagull - Core

Examples (as part of the receive section of a message in the scenario):
» Check the value of the field specified with "name" in the received message.

Check the value of the sub-entity of the field specified with "name=" and with "instance=" in the
received message

Check the value of a header field: you check that the field (specified with "name") in the header of the
message has the expected value, which in this specific case of TCAP is defined in the configuration file.

Examples for check-value usage for branching:

« For branching, only parameters required are branch_on, look _ahead or look_back; behaviour is also set
as error, to maintain check-value's structure. "name" is not needed for branching,so not maintained as
mandatory param for check-value. For ajump in the scenario,check-value has to be present as a post
action, specifying that in case of an unexpected message received, what should the scenario do. In case
the unexpected message matches the value for branch_on, it would either jump as many sectionsin
scenario,ahead or backwards, as specified by look _ahead, or look_back paramsin the traffic section.
Apart from handling unexpected messages, this feature can be used to handle optional messages. This
feature has limitations however, intended to be fixed in later releases. One limitation being that, for the
unexpected message received,no other actions apart from jump, will be executed. An example involving
sip protocol is below:

Message order check isimplemented for TCAP protocol only.

Seagull can also perform controls on the order in which the parameters are received in the messages.
Those controls are defined in the scenarios.

In the case of TCAP, the order of reception of the components (eg TC _INVOKE) inside primitives (eg
TC_BEGIN) can be checked.

Example: check that the parameter specified with "name" isreceived in second position.

0
QD
«Q
D
N
]

Seagull - Core

The position starts at zero, so position=1 checks for the second position.

If the specified position is greater than the number of received components, then an error islogged (as defined with "behaviour") and the call is
aborted.

Seagull allows to change the content of the messages before sending them, according to an external datafile
(CSV format). For each new scenario that Seagull executes, anew lineis read from the external datafile.
This line contains the values of one or several fields which are used to change the content of a sent message
on a per scenario basis. Lines can be read in sequence or randomly.

For example, this feature allows to provision alist of users or subscribers that are used during Seagull's
traffic.

To use this feature, you need to specify "external-data-file" (file to read from) and "external-data-sel ect”
(how to read the file) parameters in the configuration file:

The value of the "external-data-select” parameter can be " random™ or " sequential” . In the first case, the
specific content for a message is taken randomly from the external datafile. In the second case, the specific
content for amessage is taken in asequential order (the first line of the external datafile for the first call, the
second line for the second call, etc.).

Hereis an example of externa datafile:

Notice that the comments can be prefixed by # or // and that string values can be in ASCII (for example:
"10" trandates into 0x3130) or hexadecimal (for example: "0xA2") format.

Thefirst line with characters and that does start by the comment sign is the line that defines the data types
contained in thefile. Thislineis mandatory. The types must belong to the basic types of Seagull: string,
number, signed, number64 or signed64.

Page 27

Seagull - Core

On each line of data, you can access afield (column) with itsindex: the first data on the lineisfield(0), the
second oneisfield(1), and so on.

Thisindex is used in the scenario to define which data field in the external file is used to fill the specified
field ("entity") of the message to be sent.

The external data can also be used to fill adefined part of afield. In order to do so, the position in the buffer
that represents the field to fill where to start to inject the data ("begin” parameter) and the position where to
stop to inject the data ("end" parameter) need to be defined. When using the "begin” and "end" parameters,
be careful that the count starts at zero for the first octet. Here is an example from a client scenario:

In this example, the data (2 octets) isinjected starting at the second octet (0 isthe first octet, so 1isthe
second octet). Two bytes of data are injected at the second octet and at the third octet.

Thefield FIELD_NAME must exist in the message to be sent, as defined in the dictionary. Itsvalue in the
current message before restore-from-external is executed is changed to the data of the second column
(second because field="1").

When the specified size (difference between "begin" and "end" values) is larger than the injected data, then the datais injected inits full length from
the "begin” position and awarning is logged.

When the destination buffer is too short to reach the "begin” position (e.g. buffer with 2 numbers and "begin=5"), zeros are added to the destination
buffer so it reaches a size big enough to enable the injection of the buffer at the "begin" position (example: insert "11" at position 5 in buffer 22", the
buffer becames "2200011"). A warning islogged.

In this example, TCAP's operation-data with an initial value of
" 0x3016a00e820c48656¢6¢6f 2c20776f 726c64810100820100" will be altered from octet 5 to octet 11 (first
octet is0) so that the values will be:

0x3016a00e822143658709212¢20776f726c64810100820100 for 1st scenario execution
0x3016a00e822143658709312c20776f 726c64810100820100 for 2nd scenario execution
0x3016a00e822143658709412c20776f 726c64810100820100 for 3rd scenario execution
0x3016a00e822143658709512¢c20776f 726c64810100820100 for 4th scenario execution

Page 28

Seagull - Core

Authentication has been introduced in Seagull. Digest/MD5 and Digest/AKA are both supported.

To useit, an "external method" must be defined in the dictionary (refer to "external-method") and the
method must be defined in a set-value action for the field to be encoded (refer to "set-value”).

See SIP authentication (sip.html#sip_authentication) or Radius authentication
(radius.html#radius_authentication) for further details based on examples.

Page 29

sip.html#sip_authentication
radius.html#radius_authentication

Seagull - Core

Statistics is an important part of a performance test tool. Seagull provides three different sets of statistics:
global statistics, response time statistics, protocol and scenario statistics.

Raw statistics datais saved using CSV (http://en.wikipedia.org/wiki/Comma-separated values) file format.
This makesiit easy to import the file in specialized applications, like Octave (http://www.octave.org) or
Microsoft Excel (http://en.wikipedia.org/wiki/Microsoft Excel) to analyse the results and create graphs out
of the results.

A new line of statistics is dumped for every statistics period, allowing to follow the statistics over time.

Global statistics are used to get global informations on the traffic. See config file reference / log-stat-*
parameters to activate those statistics.

Those statistics have many counters. Here is the list. Counters can have a (P) or (C) appended to their name,
meaning that the values are (C)umulative (from the beginning of the traffic) or (P)eriodic (for the statistics
period, as specified by the |og-stat-period traffic-param).

StartTime: time when the traffic started

LastResetTime: last time when periodic counters have been reset
CurrentTime: current time

ElapsedTime: time elapsed since StartTime (if C) or LastResetTime (if P)
Rate: number of new calls per second

I ncomingCall: number of incoming calls

OutgoingCall: number of outgoing calls

M sgRecvPer S: number of messages received per second

M sgSendPer S: number of messages sent per second

UnexpectedM sg: number of unexpected messages

CurrentCall: number of currently opened calls

I nitSuccessful Call: number of successful init scenarios
TrafficSuccessfulCall: number of successful traffic scenarios
DefaultSuccessful Call: number of successful default scenarios
AbortSuccessfulCall: number of successful abort scenarios

FailedCall: number of failed cals

FailedRefused: number of failed calls because they were refused
FailedAborted: number of failed calls because they were aborted
FailedTimeout: number of failed calls because they timed out

If actions "start-timer" and "stop-timer" exist in the scenario, the following counter are updated :

* ResponseTime: average response time for the period (done in (P)eriotic and (C)umulative mode
simultaneous)

ResponseTimeRepartition: response time repartition for a period according to the distribution set with
the configuration parameter.

Default distribution values are : <50, <75, <100, <150, <300, <5000, >=5000 in ms.

The last two counters are updated when the action "stop-timer” is executed in the scenario whether the call
succed or not.

Page 30

http://en.wikipedia.org/wiki/Comma-separated_values
http://www.octave.org
http://en.wikipedia.org/wiki/Microsoft_Excel

Seagull - Core

Hereis an example of aglobal statistic file (some counters have been removed):

- ngcal‘

Hereisarea example of generated file: server-stat.csv (server-stat.csv) .

While global statistics are used to monitor the traffic over time, response time statistics are meant to be used
to measure time between two messages. Thisiswhat is usually used in performance test campaigns.

To activate response time statistics, you must specify the data-log-* parametersin the configuration file AND manage the timer in the scenario, which
means to have a <start-timer> and <stop-timer> in the scenario file.

Do not imbricate timers like this:

Always stop atimer before starting a new one:

The parameters to be set in the configuration file are the following:
e 1) data-log-period

This number specifies the timeinterval (in seconds) at which the logs are dumped to file.
Example: if set to 10, the logs are dumped every 10 seconds.

e 2) data-log-number
This number specifies the interval in number of messages at which the logs are dumped to file.

Page 31

server-stat.csv

Seagull - Core

Example: if set to 500, the logs are dumped every 500 messages.

« 3) datalog-file
It specifies the file to which the logs are dumped. Warning: if not set, no logs are available, even on the
display screen'!

o 4) datalog-rtdistrib
This number specifies the width of the distribution of the response times (in milliseconds!'!) to be
counted during the measurement interval. Here is an example, with the value set to 2000:

Number of calls 26 ...57 ... 33
|

o 5
L N N VR (N (N S
Time g1 2 500 ... 1000 ... 15

If data-log-period and data-log-number are both defined, then they are simultaneously active: the logs are
dumped every X seconds AND every Y messages.

If data-log-rtdistrib is not defined in the configuration file, then the response time statistics ook like:

where the response-time-ms values correspond to the average response time since the previous statistics
response time has been logged.

If all data-log-* parameters are defined in the configuration file, then the response time statistics look like:

Page 32

Seagull - Core

This gives the distribution of the number of calls that have been counted during the measurement interval
and globally for each response time value between 0 and data-1og-rtdistrib milliseconds.

Page 33

Seagull - Core

Protocol statistics are used to get global information on the traffic for a specified protocol. To activate
protocol statistics, you must set the protocol parametersin the configuration file. Those parameters are the
following:

1) display-protocol-stat

Setting this parameter to true enables the protocol statistics. If it isnot set to true, you will not get any
protocol statistics at screen of in log files, even if the following parameters are set.

» 2) log-protocol-stat-period

This number specifies the timeinterval (in seconds) at which the logs are dumped.
Example: if set to 5, the logs are dumped every 5 seconds.

« 3) log-protocol-stat-name

This parameter specifies the names of the protocols for which the statistics are set. Put "all" to get
statistics for all the used protocols. Otherwise, state the names of the protocols separated by semi-colons.
If you specify the names of several protocols and al, it will only consider the "all" keyword" and display
statistics for all the protocols.

If you do not specify this parameter, you do not get any protocol statistics.

4) |og-protocol-stat-file
It specifies the file to which the logs are dumped.

If the display-protocol-stat parameter is set to true, but the log-protocol-stat-period is set to zero, you will
not get any statistics displayed on screen. In this case, if you define the log-protocol-stat-file, you will get
statistics in the file, even though you do not see them on screen.

Here is an example of the protocol statistics screen that you get (example from a TCAP execution):

Page 34

Seagull - Core

Scenario statistics are used to get information for each type of scenario that exist in the scenario file. Those
can be: init, traffic, default and abort scenarios. To activate scenario statistics, the display-scenario-stat
parameter must be set to true in the configuration file:

Hereis an example of the scenario statistics screen (example from traffic scenario in a TCAP execution):

The scenario statistics are only displayed on screen, no logs are dumped to file.

Once you have the raw statistics data, you can use a variety of tools coming with Seagull to analyse the
datas and get various statistics out of it: Number of values, minimum value, maximum value, average value,
variance, standard deviation and N-th percentile.

A schema that summarizes the various tools:

« csvsplit isused to create areduced CSV file from the raw CSV data. csvsplit combines two features:
» Sampleraw CSV data by taking one measure out of "r"
» Suppress the beginning of raw CSV data to remove unwanted "startup” data

« computestat.ksh isused to compute the statistics from the raw or sampled CSV data. computestat.ksh
relies on Octave to compute reliable statistical results.

Page 35

Seagull - Core

The output of computestat.ksh is atext file like the following:

plotstat.ksh is used to create graphics from the raw or sampled CSV data. plotstat.ksh relies also on
Octave to create PNG (http://en.wikipedia.org/wiki/Png) graphical files.

Usage:

If you specify a statistics results file that has been computed with computestat.ksh through the -stat

option, then two additional plotswill be drawn: one line for the average time and one line for the
percentile.

Page 36

http://en.wikipedia.org/wiki/Png

Seagull - Core

Hereis an example of the output of plotstat.ksh:

Page 37

Seagull - Core

The logging feature of Seagull provides severa logging levels that can be combined (except A and N that
are exclusive):

e E-Errors
» Syntax error in config or scenario files
* Unableto open afile

e W-Warnings - non blocking errors
* Noinit scenario
 No more call context availables

e T-Traffic events
* Unexpected messages
» Refused calls
e Incorrect state

» M-Messages (decoded messages)
« B-Buffer (hex dumps)
« V-Verdict (Trace the result of each call with its session-id in the log file)
If the call has no session id, no logs are traced.
Be awared that the session-id may not be unique in the log file.
The "Init" section is considered as aindependant call.
» passed: cal issuccesful
o failed: cal isfailed

e U-User logs (possibility to user to add user comments in the log file)

e A-All
* N-None
Thelog level is specified in the command line, using - | | evel option. Example: -1 | evel EW will log

Errors, Warnings and Traffic events.

By default, all log entries are time-stamped. Thisis costly in terms of CPU time for the test tool. These time-stamps can be disabled by using the
"-noti mel og" command line option when launching the tool.

There are 3 different configuration files:

Generic configuration file - describing traffic and network parameters

Protocol dictionary configuration file - rarely to be edited

Scenario file - describing the sequence of messages to exchange with the system under test and
intermediate actions to perform

The generic configuration file describes the network environment as well as traffic parameters.

The network environment is described by "transport channel entities'. The transport entity is then used as an

Page 38

Seagull - Core

attribute of send and r ecei ve scenario commands, as well as during the opening of the transport channel
(see below).

Y ou can aso specify traffic parametersin the configuration file, like the call rate, the name of the statistics
file, etc.

In Seagull, messages and parameters of protocols used in a scenario are described in an XML dictionary.
Thisalows agreat flexibility to add new messages or parameters. Y ou can create as many dictionaries as
you want, for example to work with different flavors or versions of a protocol.

Page 39

Seagull - Core

To specify the dictionary, use the -dico option in the command line:

To be able to work with a multi-protocol scenario, specify several dictionaries as arguments of the -dico
option:

A dictionary contains several XML sections. protocol, types, header, body, dictionary:

"protocol”: thisis the top level section. Depending on the protocol, some attributes can be configured there:

Common for all protocols

* name: aname used to identify the protocol in the config file

* type: can be "text" (like XCAP or H248 text), "binary" (like Diameter), "external-library" (like
OCTCAP) or "binary-body-not-interpreted” (to support some custom protocols)

e usetransport-library: "trans-ip" (TCP or UDP), "trans-extsctp" for SCTP, "trans-octcap” for
OCTCAP (thisrefersto the name of the library file).

For binary type

For text type

» filter: to specify afilter to be used when reading the XML scenario before sending it. Used to
remove heading and trailing spaces or tabs, add additional CR/LF,

Example: "lib=libparser_h248.so;function=filter _h248"

» field-separator: to specify the text sequence to be appended to each line in the XML scenario.
Example: field-separator="\r\n" will replace the end of line of the scenario with "\r\n".

* body-separator: text sequence to be added between the header and the body sections.
Example: body-separator="\r\n" for XCAP, body-separator="{" for H248 text.

external-library type

» context-factory-constructor: name of the constructor method of message (which is defined in the
external library).

» context-factory-destructor: name of the destructor method of message (which is defined in the
external library).

binary-body-not-interpreted type

FIXME (Olivier):
Add context-factory explanations

"types": this section contains all the types needed for the protocol. An example of the Types section for the
Diameter protocol is available there (diameter.html#Types) .

This section is optional (but becames mandatory if the protocol needs specific types).

"header": this section contains the description of the message header. An example of the Header section for

diameter.html#Types

Seagull - Core

the Diameter protocol is available there (diameter.html#Header) .
"fielddef" tags define elements of the header.

For atext protocol, all fields have the string type and they can have "regexp" tags to define them.
Example (SIP protocol):

For other protocols, several attributes are needed.
Example (OCTCAP protocol):

This section is mandatory.

name Name of the field. Any string -
without spaces.

size Size of the field. 2

unit Unit of the size. octet

type Optional. Type of the size number

(number, string or a type
defined in the dictionary "types"
section)

mask Optional. For binary protocol. 124
Mask of the field. If only a part
of the field is significant, a
mask can be applied to the
value of the field.

to-string Optional. For external protocol.
Name of the function to convert
the field from an integer value
to a string value of the field.

from-string Optional. For external protocol.
Name of the function to convert
the field from a string value to
an integer value of the field.

set-function Optional. For external protocol.
Name of the function to set the
value of the field.

get-function Optional. For external protocol.
Name of the function to get the
value of the field.

default Optional. Set a default value for

Page 41

diameter.html#Header

Seagull - Core

the field.

config-field Optional. If the value if set in -
the configuration file, name of
the parameter of the
configuration file.

Table 1: List of fielddef attributes

"body": this section contains the description of the message body (which comes after the header). An
example of the Body section for the Diameter protocol is available there (diameter.html#Body) .

This section is mandatory.

"body-method": this section contains the methods to be used to parse the body. It is composed of several
"def-method" sections.

name: Name of the body-method. It can be anything.

method: It can be "length" (the length of the body to be parsed isindicated by the param parameter) or
"parsar”

param: For a"length" method, it specifies the parameter to be used to indicate the body length
(Example: param=Content-L ength). For a"parser" method, it indicates the library and the function to be
used (Example for XCAP: "lib=libparser_xml.so;function=parse_xml"; for H248:

"lib=libparser _h248.so;function=parse_h248")

Example:

FIXME (Olivier):
Add body-method example

This section is mandatory.

"external-method": this section contains the methods to be used to encode fields. It is composed of several
"defmethod" sections. The concerned fields must refer to this method in the 'set-value' action in the scenario
with the attribute 'method’ (see "set_value" action). For now, "crypto_method" from "libtrans_iptls.so"
library isthe only available method.

An example is described for the SIP protocol at SIP authentication (sip.html#sip_authentication) .

« name: Name of the method. It can be anything.
« param: It indicates the library and the function to be used.
(Example: "lib=libtrans_iptls.so;function=crypto_method")

Example:

This section is optional.

Page 42

diameter.html#Body
sip.html#sip_authentication

Seagull - Core

sys_time_ms lib_generalmethods.so = System time in >1.7
milliseconds.

Table 1: List of general purpose methods

"dictionary": this section contains all possible messages and parameters.

In addition, severd attributes are available:

session-method: It can be "field”, in which case a session or "call" isidentified with a specified protocol
field, or it can be "open-id", in which case a session or "call" isidentified with the "open-id" (e.g. a
socket id in case of HTTP)). "open-id" is currently implemented only for "text" and "binary" protocols.
session-id (mandatory for a" field" session-method): Only for a"field" session-method. It specifies
the field to be used to identify each session (or "call").

out-of-session-id (optional for a" field" session-method): Only for a"field" session-method. It
specifiesafield to be used in backup of the one defined by the session-id attribute.

This section is mandatory.

In general, instances of a scenario (aka calls) are identified, see Dictionary, either with asession-id (a
protocol field) or with an open-id (a socket id).

In some cases, the session-id cannot be unique during the whole call: its value may be changed during the
call and/or adifferent field of the message (header or body) is used for the rest of the call. In particular this
can be the case if several channels are used during the scenario.

Hereis an example of such call flow for which Seagull could play therole of client, server_1 or server 2.

Page 43

Seagull - Core

To support these situations Seagull provides the "correlation” feature. It allows to use several session-ids for
the same call.

At Seagull level and for each channel, alist (called "map") of the known session-idsis built to match
received messages to current calls. A constraint is that Seagull must know the alternative session-id of a call
before it can recognize any message with this alternative session-id.

From a user perspective, the scenario includes a"correlation” section (detailed below) and the "label” tag is
used from the scenario commands (e.g. send and receive) to refer to the specific processing defined in the
correlation section.

The correlation section is optional in the scenario file but it must be present to enable the correlation feature.
If not present, the "label" tags are ignored in the scenario commands and a call can only be identified by a
single session-id value.

Example of a correlation section, see below for the details of the sub-sections:

For each channel used in the scenario, a"channel" sub-section must be added. It contains at |east the retrieve
method and optionnally some commands.

The "retrieve" sub-section defines all the fields (defined in the dictionary) in which the session-id can be

Page 44

Seagull - Core

located. For each such field, a"search-in-map" tag must be added.

For a new received message on a given channel, Seagull gets the value of the field defined in "name" and
searchesin its"map" of call contexts to match a known call.

Example:

The "command" sub-section can contain any other actions of the scenario but it must be present to host an
"Insert-in-map" action when it is necessary to store a new value of session-id for acall.

The "pre-action” tag defines the actions which must be done before the scenario command.

The "post-action” tag defines the actions which must be done after the scenario command.

The "insert-in-map" action is specific to the correlation feature. It insertsin the list of known session-ids for
the given "channel” the value of the "entity” (that is defined in the dictionary).

Example:

If no "insert-in-map" action is defined in the correlation section, then seagull implements a default behavior. It processes messages by looking for the
session-id field defined in the dictionary and inserting it in the map of the first channel defined in the configuration file. this would not work in case
of multiple channels.

Finally the correlation "commands" defined above are linked to the scenario by setting a"label” into the
scenario command (send).
Example:

Page 45

Seagull - Core

An example of the correlation feature is proposed for the SIP protocol: SIP correlation example
(sip.html#sip_correlation) .

The open-id feature is compatible with the correlation one.
The configuration is the same as a open id one:
Example:

The traffic section is not changed except the |abel:
Example:

The correlation section has to be defined like this:
Example:

"session-method-open-id” Is the key word to define a search of the id of the call by the socket.
"default-session-id" isthe key word to let Seagull insert the id of the call into the map (here the socket of the

‘8

For support on Seagull, please send your questions on Seagull users mailing list:
gull-users@lists.souceforge.net (mailto:gull-users@lists.souceforge.net) . Y ou will likely get support from

c
é
17

Y]

QD

«Q

@D

D

(o]

sip.html#sip_correlation
mailto:gull-users@lists.souceforge.net

Seagull - Core

This section is the reference for all values and parameters of Seagull.

The sending segmentation is not implemented yet in Seagull. If the message cannot send entirely, alog is put on the log-file to indicate it. No other
particular treaments are done.
The receiving segmentation isimplemented. If amessage is not complete, it is stored and the next buffer read is push at the end of stored incomplete

message.

The following tableisalist of transport channel parameters, that can be present in the generic configuration

file.

name

file

create_function

delete_function

init-args

Name of the transport entity.
Any string without spaces.

Shared library to be used for
transport.

Function used to create a
transport instance

Function used to delete a
transport instance

Arguments to be passed to the
transport library. The
arguments are separated by
semi-colons (;).

Value is "libtrans_ip.so" for
TCP or UDP over IP,
libtrans_iptls.so for TLS over IP
(based on openssl library),
"libtrans_extsctp.so" for SCTP
(this one is based on an
external SCTP library) and
"libtrans_octcap.so" for TCAP.

Value is
"create_cipio_instance" for
IP-based protocols,
"create_ciptlsio_instance" for
IP/TLS and
"create_ctransoctcap_instance"
for TCAP.

Value is
"delete_cipio_instance" for
IP-based protocols,
"delete_ciptlsio_instance" for
IP/TLS and
"delete_ctransoctcap_instance"
for TCAP.

* For the"libtrans ip.so", the
possible values are:

e type=tcp (default=tcp)

e decode-buf-len
(default=4096): size of
the reception buffer
(maximum message size
after re-assembly)

e encode-buf-len
(default=4096): size of
the sending buffer
(maximum message size
to be sent (can be

Page 47

segmented))

e read-buf-len
(default=1024): amount
of bytesto read on the IP
socket at atime - severa
reads might be necessary
if buffer isthe messageto
read is bigger than the
buffer (impact on
performances)

e close-wait-ms
(default=10): valuein
milliseconds before the
socket is actualy closed
(used for SO_LINGER).

For the "libtrans iptls.so", the

possible values are:

¢ method=SSLv23:
indicates the method of
connection. Thisvalue
corresponds to
SSLv23_method

e cert_chain file=xxx:
indicates the name of the
certificate

e private key file=yyy :
indicates the name of the
private key

e passwd=zzz: this
password protects the
private key

e secure: indicatesif the
mode is secure at the
begining of the traffic
(yes/no, default:yes)

e decode-buf-len
(default=4096): size of
the reception buffer
(maximum message size
after re-assembly)

e encode-buf-len
(default=4096): size of
the sending buffer
(maximum message size
to be sent (can be
segmented))

e read-buf-len
(default=1024): amount
of bytesto read on the IP
socket at atime - severd
reads might be necessary
if buffer isthe messageto
read is bigger than the
buffer (impact on
performances)

For the "libtrans_octcap.so”,
the possible parameters are
the following (see details here

Seagull - Core

http://gull.sourceforge.net/doc/octcap.html#Transport+protocols+and+channels+for+TCAP

Seagull - Core

name

protocol

global

transport

reconnect

open-args

(http://gull .sourceforge.net/doc/octcap.html#Transport+pra

e flavour (possible values:
WBB, AAA, WAA,

ABB)

e pathtothereference
library (optional)

e referencelibrary
(optional)

Table 1: List of transport channel parameters (transport entity)

Name of the transport entity.
Any string without spaces.

Protocol to be used for this
channel.

Indicate if a channel is declared
and used globally (opened
once) or needs to be opened
for each scenario call (using
the "open" action). By default,
the channel is declared
globally. adding gl obal =" no"
will allow to open channels in
the scenarios.

Transport to be used for this
channel

Optional. If set to "yes", seagull
tries to re-connect if the
connection is lost.

Arguments to specify
connexion parameters.
e libtrans ip based channels:

¢ mode (mandatory):
"client" (first message on
the channel is sent) or
"server” (first message on
the channel isreceived)

e dest (mandatory):
destination IP
address/port to send
messages

e standby (optional): standy
destination IP
address/port to send
messages.(Note that this
feature is useful only
when reconnect feature is
used, in which case
seagull tried to connect to

The value must correspond to
one of the protocol name
defined in a dictionary.

The value must correspond to
one transport defined
previously.

yes

Page 49

Seagull - Core

the active and standby
destinations alternatively)
e source (optional): source
IP address/port to send
messages (if not
specified, the system
chooses the best one)

Example of value for aclient
for alP-based protocol:
"mode=client;dest=127.0.0.1:3
Example of value for active
and standby clientsfor a
IP-based protocol:
"mode=client;dest=127.0.0.1:3
Example of value for a server
for alP-based protocol:
"mode=ser ver ;sour ce=127.0.0.
» libtrans_octcap based

channels:
¢ class (mandatory): Name
of the OCSS7 stack

¢ o0ssn (mandatory):
Originating SSN used to
connect Seagull TCAP
application to OCSS7
stack (one of thelocal
OCSS7 SSN)

e application (optional):
Application ID used by
Seagull (refer to OCSS7
Application Developer's
Guide)

e instance (optiona):
Instance ID used by
Seagull (refer to OCSS7
Application Developer's
Guide)

Example:
"class=SS7_Stack 2;0ssn=20;3

Table 2: List of channel parameters (channel entity)

Thistableisalist of traffic parameters, that can be present in the generic configuration file.

call-rate Specify the call-rate in | - <defi ne
a number of calls per entity="traffic-parant
seconds. Only nane="cal |l -rate"
applicable to the client val ue="500">
side. Indicates that Seagull

will start with a steady
call rate of 500 calls
per seconds.

display-period Define the refresh rate 1 <defi ne

Page 50

Seagull - Core

log-stat-period

log-stat-file

data-log-file

data-log-period

data-log-number

of on-screen
information. 0 means
that on-screen
information is not
displayed. See also
display-protocol-stat
and
display-scenario-stat to
set statistics.

log-stat-period is the
periodicity, in seconds,
of statistics dump in
the statistic file
(log-stat-file
parameter).

The name of the
statistic log file. The
date is inserted
between the name and
the extension.
WARNING: both
log-stat-period and
log-stat-file must be
present for statistics to
be activated.

The name of the
response time data file.
The date is inserted
between the name and
the extension.
WARNING: you need
to specify a file in order
to activate the
response time
statistics.

The response time
data is saved every n
second period. If value
is 0, then the
data-log-number
traffic-param is used.

The response time
data is saved every m
numbers of data. This
ensure that memory
usage does not get too
high.

60

200

entity="traffic-parant
nane="di spl ay- peri od"
val ue="1">

Refreshes the screen

every one second.

<defi ne
entity="traffic-parant
nane="1 og- st at - peri od"
val ue="60">: a new

line in the statistic file

is created every 60

seconds.

<defi ne
entity="traffic-parant
name="1og-stat-file"

val ue="client-stat.csv">:

the statistics are saved
in

client-stat.2004-10-13.13:23:01.120.csv

file.

<defi ne
entity="traffic-parant
name="dat a-| og-file"

value="client-rtt.csv">:

the response time
statistics are saved in
the file you specified.

<defi ne
entity="traffic-parant
nane="dat a- | og- peri od"
val ue="10">: the
response time

statistics are saved in

the file every 10

seconds (default is 1
second).

<defi ne
entity="traffic-parant
nane="dat a- | og- nunmber "
val ue="500">: the
response time

statistics are saved in

every 500 measures

(default is 200

measures).

Page 51

data-log-rtdistrib

response-time-repartitior

log-file

files-no-timestamp

display-protocol-stat

log-protocol-stat-period

log-protocol-stat-name

Defines the value of -
the interval on which

the messages are
sampled. This value is

in milliseconds.

The intervals in which | -
the response time
measures are going to

be spreaded.

The base name of the -
log file. The date is
inserted between the
name and the

extension.

To specify to not insert -
the date between the
name and the

extension in the log

files names.

Enable (true) / disable true
(false) the protocol

statistics. If you set this
parameter to false, you

do not get any protocol
statistics neither on

screen nor dumped to

file.

Specify the interval in -
seconds at which the
logs are dumped.
Example: if set to 5,
the logs are dumped
every 5 seconds.

If you only want the
logs dumped to file and
you do not want
information displayed
on screen, set this
value to 0.

Specify the names of all
the protocols for which
the statistics are set.
Put "all" to get
statistics for all the
protocols used.
Otherwise, state the
names of the protocols
separated by
semi-colons.

If you specify the

Seagull - Core

<defi ne
entity="traffic-parant

nanme="dat a-l og-rtdistrib"

val ue="2000" >
</ defi ne>

<defi ne
entity="traffic-parant

nane="response-time-repartition”

val ue="25, 50, 75, 100, 125, 150, 200, 250, .

<defi ne
entity="traffic-parant
nane="1og-file"

val ue="client.| og">:
the logs are saved in

client.2004-10-13.13:23:01.120.log

log file.

<defi ne
entity="traffic-parant

nane="fil es-no-ti mestanp"

val ue="true" >: the
logs are saved in
“client.log" log file.

<defi ne
entity="traffic-parant

nanme="di spl ay- pr ot ocol - st at

val ue="true">
</ defi ne>

<defi ne
entity="traffic-parant

name="1| og- prot ocol - st at - peri od"

val ue="5">
</ defi ne>

<defi ne
entity="traffic-parant

nane="1 og- pr ot ocol - st at - nane

val ue="al | ">
</ defi ne>

Page 52

Seagull - Core

names of several
protocols and all, it will
only consider the "all"
keyword" and display
statistics for all the
protocols.

If you do not specify
this parameter, you do
not get any protocol

statistics.
log-protocol-stat-file Specify the file in - <define
which the protocol logs entity="traffic-parant
are dumped. The name="1 og- prot ocol -stat-file"
name of the protocol val ue="../1 ogs/server-protocol -stat.
and the time and date </ defi ne>

are added to the
filename to make it

unique.

display-scenario-stat Enable (true) / disable | true <define
(false) the scenario entity="traffic-parant
statistics. Remember nane="di spl ay- scenari o-stat"
that the scenario val ue="true">
statistics are only </ defi ne>

displayed on screen,
and not dumped to file.

number-calls Number of calls to be - <defi ne
done. It is available for entity="traffic-parant
client and server. Once nane="nunber-cal | s"
the number of calls is val ue="1000">:
reached, no new calls Placed (client) or
are : accepted (server) at
- placed by the least 1000 calls.

client(note that some
additional calls can be
placed, but no less)

- accepted by the
server.

WARNING: the init
section of the scenario
is considered as one
call for the server side.

call-timeout-ms call-timeout-ms defines 0 <defi ne
a timer after which, if entity="traffic-parant
the scenario is stuck, nane="cal | -ti neout - ns"
the call will be closed val ue="30000" >
and marked as failed. </ def i ne> specifies
0 means that this that a call that is stuck
feature is de-activated. for more than 30s will

be terminated.

call-open-timeout-ms call-open-timeout-ms 0 <defi ne
defines a timer after entity="traffic-parant
which, if the socket nane="cal | - open-ti neout - ns"
used by the call has val ue="5000" >
not been properly open </ def i ne> mark the

Page 53

call-timeout-behaviour-a

msg-check-level

msg-check-behaviour

burst-limit (tuning)

max-send (tuning)

(if the system is
overloaded for
example), the call is
marked as failed. O
means that this feature
is de-activated.

If a timeout is detected
for a call, this
parameter defines the
behaviour before
closing the call. If it is
set to "true", the
section "abort" is
executed before
closing the call.

A message is logged if
this parameter is set to
true and the section
"abort" is missing in
the sceanrio.

Type of message
check. Possible values
are "P" (Presence
check) and "A"
(Additional field check).
The default value is
"P".

Behaviour in case of
message check fails.
Possible values are "E"
(log error and abort
call) and "W" (log
warning and continue
call). The default value
is "W".

The burst limit
corresponds to the
number of new calls
that Seagull can place
in a period of one
second. This is used to
smooth the load at the
beginning of a traffic or
when traffic resumes.

max-send corresponds
to the number of
messages that can be
sent in one scheduling
loop. NB: in future
versions of the tool,
this value will not be
accessible anymore. It

true

50

(call rate) *
nb_send_per_scene

Seagull - Core

call as failed if the
socket creation
process has not been
achieved within 5s.

<defi ne
entity="traffic-parant

nane="cal | -ti neout - behavi our - abort™"

val ue="true">
</ defi ne>

<defi ne
entity="traffic-parant
nane="nsg- check-1| evel "
val ue="P">

</ def i ne> checks

that at least all

parameters listed in

the scenario are

present.

<defi ne
entity="traffic-parant

nane="nmsg- check- behavi our"

val ue="E">
</ defi ne>

<defi ne
entity="traffic-parant
name="burst-limt"

val ue="50">

Indicates that Seagull

will not place more

than 50 new calls per
seconds.

<defi ne
entity="traffic-parant
nane="nmax- send"

val ue="250">

Page 54

Seagull - Core

max-receive (tuning)

select-timeout-ms
(tuning)

max-simultaneous-calls
(tuning)

model-traffic-select

will be computed from
the call rate and the
scenarii.

max-receive
corresponds to the
number of messages
that can be received in
one scheduling loop.
NB: in future versions
of the tool, this value
will not be accessible
anymore. It will be
computed from the call
rate and the scenarii.

Defines the value of
the timer set when
listening to the system,
waiting for the
messages. Counter in
milliseconds.

For low call-rate, set a
value at least lower
than the smallest "wait"
in the scenario.

Be careful, the lower
the value, the more
CPU time will used.

max-simultaneous-calls

is the maximum
number of
simultaneous calls that
can be placed by the
tool.

Specifies which
distribution is selected
to create new
calls.Three different
types are
implemented:

-uniform : for each
interval, seagull tries to
reach the expected call
rate, regardless of
what happened during
the lastest interval.
With this value, the
max-receive and
max-send options are
automatically set.
-best-effort : seagull
tries to maintain the
expected average call
rate by adjusting the
instantaneous call rate
using the rates

at least (call rate) *
nb_recv_per_scene

1000

(Duration of a call * call
rate)* 1.2

best-effort

<defi ne
entity="traffic-parant
name="nmax-recei ve"

val ue="250">

<defi ne
entity="traffic-parant
name="sel ect-ti neout - ns"
val ue="1000">

<defi ne
entity="traffic-parant
name="nmax- si mul t aneous-cal | s"
val ue="1000">

</ defi ne>

<defi ne
entity="traffic-parant
nane="nodel -traffic-sel ect”
val ue="best-effort">

</ defi ne>

Page 55

external-data-file

external-data-select

reached during the
previous intervals.
This is the default
value.

-poisson : the real call
rate varies around the
expected call rate
according to the
Poisson distribution

File from which the
data are taken for the
external data
management.

external_data.csv

Defines the way the
data are extracted from
the external data file.
Value can be
sequential or random.

sequential

Seagull - Core

<defi ne
entity="traffic-parant
nane="ext ernal -data-fil e"
val ue="ext ernal _data.csv">
</ defi ne>

<defi ne
entity="traffic-parant
name="ext er nal - dat a- sel ect"”
val ue="sequenti al ">

</ defi ne>

Table 1: List of traffic parameters (traffic-param entity)

For text protocol, it is possible to define configuration parameters. They are set in the configuration file and
the value of the parameter can be used in the scenario.
In the configuration file, the configuration parameters are defined:

See"SIPfirst try

In the scenario, the value is restored in the message (example for SIP protocol):

sp.html#first_try param) " for acomment

example

This section is the reference for Seagull scenarios.

Thistableisthelist of commands that can be used in scenarios with their attributes.

channel Refers to

"transport-channel"

channel ="trans-i p-v4":
Use trans-ip-v4

Page 56

sip.html#first_try_param

Seagull - Core

entities, as defined in channel.

the generic
configuration file.

label Optional. Refers to | abel =" command- 1":
correlation "command" refers to the
entities, as defined in "command-1".

the correlation section.

channel Refers to channel ="trans-i p-v4":
"transport-channel" Use trans-ip-v4
entities, as defined in channel.
the generic
configuration file.

label Optional. Refers to | abel =" command- 1":
correlation "command" | refers to the
entities, as defined in "command-1".

the correlation section.

value Number of <wai t - ms
milliseconds to wait for. val ue="2000"></wai t - ns>:
wait for 2 seconds

name Name of the counter nane="cl i ent-i d-counter"
init Initial value of the init="1"

counter
min Optional. Minimal m n="0"

value of the counter.
(Default value is 0)

max Optional. Maximal max="100"
value of the counter.
The interpretation of
the value of this
attribute depends on
the platform and
corresponds to an
Unsigned long defined
in the file "limit.h".
If "max" is defined,
when the "max" value
is reached, the counter
is re-initialized to the
value defined by the
"behaviour" attribute.

behaviour Optional. Possible behavi our="init"
values of this attribute

Page 57

Seagull - Core

are:
"init" : when the "max"
value is reached, the
counter is re-initialized
to the "init" value,
"min" : when the "max"
value is reached, the
counter is re-initialized
to the "min" value,
"no_reset": when the
"max" value is
reached, the counter is
not re-initialized and
stays at the "max"
value.

(Default value is "min"

Table 1: List of scenario commands with their attributes

Page 58

Seagull - Core

Thistableisthelist of actions that can be used in <send> or <receive> commands.

args Argument relevant to mode=client;dest=10.10.11.157:8080
the transport channel
used

name Name of the channel to channel-1
be closed.

name Name of the call sid

variable where to store
the protocol entity.

entity Name of the protocol Session-Id
entity to store. It can
be any protocol entity
(body or header).

instance Instance identifier of instance="InitiaIDP-data"
the component to be
stored.

sub-entity Identifier of the sub-entity="operation-code"

parameter of the
component to be
stored.

begin Position from which we = begin="1"
start to get the data.
Be careful, the count
for the position starts
at zero. Example for
the second position:

end Position at which we end="9"

stop to get the data. Be

careful, the count for

the position starts at

zero and the last piece

of injected data is at

the end position minus

one.

Page 59

name

entity

instance

sub-entity

begin

end

name

format

Name of the call
variable where to
restore from.

Name of the protocol
entity to restore to.

Instance identifier of
the component to be
restored.

Identifier of the
parameter of the
component to be
restored.

Position at which we
start to inject the data.
Be careful, the count
for the position starts
at zero. Example for
the second position:

Position at which we
stop to inject the data.
Be careful, the count
for the position starts
at zero and the last
piece of injected data
is at the end position
minus one.

response time
statistics

response time
statistics

Name of the protocol
entity to set

The format is a string
that can contain call
variables (identified by
$(varname)).

If associated to the
"method" attribute, it is

Seagull - Core

sid

Session-Id

instance="InitialDP-data"

sub-entity="operation-code"

begin="1"

end="9"

"Session-Id" set the
value of Session-Ild
parameter

".;1096298391;$(session-counter)":
fixed string with a

variable part (value of
"session-counter" call

variable)

Page 60

Seagull - Core

method

message_part

name

entity

instance

sub-entity

position

used to pass
parameters to the
method (refer to
Authentication for
further details).

Optional. The method
refers to an
"external-method" of
the dictionary. It
defines the function to
encode the value.

Optional and only if the
"method" attribute is
used. The
message_part defines
the part of the
message that is used
by the method to
encode the value.
Allowed values are :
" (default value)
"body"

"header"

"all"

Name of the call
variable where to store
the protocol entity.

Name of the stored
protocol entity. Needed
to determine the type
of the call variable.

Instance identifier of
the component to be
stored.

Identifier of the
parameter of the
component to be
stored.

Position of the bit to be
changed. Position
starts at 0. Example for
the second position:

"authentication"

sid

Session-Id

instance="InitialDP-data"

sub-entity="operation-code

position="1"

Page 61

value

<set-value-bit>

New value of the bit.
Admitted values are 0
orl.

Set the value of a bit in

value="0"

<set-val ue-bit

Seagull - Core

a field of a message.t y="fi el d-from di cti d
This is only availablenst ance="1ni ti al DP- da
for variables of nursbér ent i t y="operati on-c

or string type. Value
can only be O or 1. The
position starts at 0

posi ti on="x"
val ue="y" >
</set-val ue-bit>

(second position is 1).

entity Name of the stored Session-1d
protocol entity. Needed
to determine the type

of the call variable.

Instance identifier of instance="InitialDP-data

the stored component.

instance

Identifier of the
parameter of the
stored component.

sub-entity sub-entity="operation-code"

position Position of the bit to be ' position="1"
changed. Position
starts at 0. Example for

the second position:

value New value of the bit. value="0"
Admitted values are 0

orl.

<setfield> Set the value of a field <setfield

of a message. Thimise="fi el d-fromdi cti o
only available for val ue="XX"></setfi el d

external (header and
body fields) and binary

(header fields only)
protocols.
name Name of the protocol name="field-from-dictionary"
field.
value Value of the field. value="XX"

<i nc- count er
nanme="HbH count er " >
</i nc-count er >

<inc-counter> Increment a global

counter

"HbH-counter"
increment the value of

Name of the global
counter to increment

HbH-counter by 1

Increment a variable of <i nc-var
a call name="| NVCKE- | D" >
</inc-var>

<inc-var>

"INVOKE-ID"
increment the value of

name Name of the call
variable to increment

Page 62
Copyright © 2006 HP OpencCall Software All rights reserved.

Seagull - Core

name

behaviour

instance

occurrence

name

behaviour

instance

sub-entity

branch_on

look_ahead

look_back

Check

Name of the protocol
entity to check

Behaviour to adopt in
case the protocol entity
is missing. Can be
"error" or "warning"

Instance identifier of
the component to be
checked.

Optional (default is
1).Specifies the
position of the field,in
case of multiple
occurrences (used with
grouped AVPs in
diameter).

Check

Name of the protocol
entity to check

Behaviour to adopt in
case the value is not
the expected one. Can
be "error" or "warning"

Instance identifier of
the component to be
checked.

Identifier of parameter
of the component to be
checked.

Specifies the received
message,on which the
scenario execution is
branched,to point
either ahead,or back in
the scenario.

(default 1)Specifies the
number of jumps in
traffic section of the
scenario ahead.

(default 0).Specifies
the number of jumps in
traffic section of the

INVOKE-ID by 1

name="bar" for bar
field

behaviour="error"

instance="InitialDP-data"

occurrence="1"

name="bar" for bar
field

behaviour="error"

instance="InitialDP-data

sub-entity="operation-code"

branch_on="180"

look_ahead="2"

look_back="1"

Page 63

name

behaviour

position

field

entity

sub-entity

instance

begin

end

occurrence

scenario backwards.

Check

Name of the message
to check

Behaviour to adopt in

case the position is not
the one expected. Can
be "error" or "warning"

Position at which the
message is awaited.
Be careful: positions
start at 0.

The number of the
data field used, in the
data file

The field of the
message to which is
assigned the new
value

Identifier of component
parameter in which we
insert some data.

Instance identifier of
the component to be
checked.

Position at which we
start to inject the data.
Be careful, the count
for the positions start
at zero. Example for
the second position:

Position at which we
stop to inject the data.
Be careful, the count
for the positions start
at zero, and the last
piece of data injected
is at end position
minus one.

Optional (default is
1).Specifies the

Seagull - Core

name="bar" for bar
message

behaviour="error"

position="0"

field="0" for the first
field

entity="Volume_requested"

sub-entity="operation-data"

instance="InitialDP-data"

begin="1"

end="9"

occurrence="1"

Page 64

Seagull - Core

position of the field,in
case of multiple
occurrences (used with
grouped AVPs in
diameter).

restore-from-external> Restore a value with<r est or e- f r om ext er na
data coming from a file name="cal | _vari abl e’

into a call variable field="1">
</restore-from externd

name The field of the entity="Volume_requested"
message to which is
assigned the new

value

field The number of the field="0" for the first
data field used, in the | field
data file

<set-new-session-id> Change the value by <set - new session-id
which a session nane="TI| D"
(scenand exgetitionqissact i on-i d" ></ set - ne
identified. This allows
scenarios to be
executed with multiple
session-ids in one
scenario. See
(h248.html) for an
example.

name Value that was used to = name="TID"
identify the session
(can be a variable that
was stored or a
counter).

entity New value to use to name="transaction-id"
identify the session
(like the value of a
protocol field)

<transport-option> Change the mode from <transport-option
no secure to secure channel =" channel - 1"
transperalduertjsecur e- node" ></ t r anspo
execution. A "wait-ms"
(with value="1000" at

least) command is
needed after this
action to let systems
synchronize the secure
mode.

channel Value that was used to = channel="channel-1"
identify the channel.

value "secure-mode" value="secure-mode"
indicates that the mode
will change to secure
(the only agreed

Page 65
Copyright © 2006 HP OpencCall Software All rights reserved.

h248.html

Seagull - Core

value).

channel Value that was used to = channel="channel-1"
identify the channel.

entity Add the value of the
"entity" to te map of
known session-ids.

format User comment to be format="User log,
added to the log file. call-id= $(SID)"

Table 2: List of actions

Seagull returns a global status of the calls through the return code:

e 0: ok, seagull did not meet any problems and all calls finished well.

« -1:fatal error, seagull met afatal error and stopped.

« >1:eror, at least, one call failed ("Ignored" calls are not considered as failed; theinit section is
concidered as aindependant call).

Page 66

Seagull - Core

When working with Seagull, there are some useful and complementary tools:

o Wireshark (http://www.wireshark.org/) : formerly known as "Ethereal”, Wireshark is a protocol decoder.
It will most likely decode all the protocols supported by Seagull.

o Visua REGEXP (http://laurent.riesterer.free.fr/regexp/) : thisinvaluable tool can be used to debug
regular expressions (widely used in Seagull!).

Page 67

http://www.wireshark.org/
http://laurent.riesterer.free.fr/regexp/

	1 Installation
	1.1 Platforms supported
	1.2 Installing Octave
	1.3 Compiling Seagull from source code
	1.4 Installing Seagull
	1.5 Uninstalling Seagull
	1.6 Upgrading Seagull

	2 Using Seagull
	2.1 Traffic profile
	2.2 Controlling Seagull
	2.2.1 Keyboard control
	2.2.2 Remote control
	2.2.2.1 Description
	2.2.2.2 Control commands

	2.2.3 Posix signal control

	2.3 Navigating through the screens

	3 Concepts and definitions
	3.1 Scenario
	3.2 Session-Id
	3.3 Transport protocols and channels
	3.4 SCTP transport
	3.5 Multi-channels
	3.6 Traffic Models

	4 Seagull scenario
	4.1 Scenario sections
	4.1.1 Counter section
	4.1.2 Correlation section
	4.1.3 Init section
	4.1.4 Default section
	4.1.5 Abort section
	4.1.6 Traffic section

	4.2 Actions in scenarios
	4.3 Call variables
	4.4 Counters
	4.5 Store and restore of protocol parameters

	5 Message and parameters control
	5.1 Enabling and disabling controls
	5.2 Behaviour when a control fails
	5.3 Presence check
	5.4 Parameter value check
	5.5 Message order check

	6 External data management
	6.1 Description
	6.2 Example

	7 Authentication
	8 Statistics
	8.1 Global statistics
	8.2 Response time statistics
	8.3 Protocol statistics
	8.4 Scenario statistics
	8.5 Getting statistics out of response time raw data

	9 Logs and traces
	10 Configuration files
	10.1 Generic configuration
	10.2 Protocol dictionary
	10.2.1 Protocol
	10.2.2 Types
	10.2.3 Header
	10.2.4 Body
	10.2.5 body-method
	10.2.6 external-method
	10.2.7 Dictionary

	11 Correlation
	11.1 Correlation with open id feature

	12 Getting support
	13 Reference
	13.1 Generic configuration reference
	13.1.1 Transport configuration
	13.1.2 Generic configuration

	13.2 Configuration parameters
	13.3 Scenario reference
	13.4 Command line arguments
	13.5 Seagull return code

	14 Miscellaneous tools

