
IMS Bench SIPp

Introduction

by David Verbeiren (Intel), Philippe Lecluse (Intel), Xavier Simonart (Intel)

Table of contents

1 Overview... 2

2 Getting IMS Bench SIPp...3

3 Tested Platforms..3

4 Design Objectives..3

5 Limitations...4

5.1 Versus the specifications...4

5.2 Other Limitations.. 4

6 Test System High Level Overview... 5

7 New Features and Changes to SIPp.. 6

Copyright © 2004,2005,2006,2007 The authors All rights reserved.

1. Overview

The "IMS Bench SIPp" is a modified version of SIPp with supporting scenario files and a few tools meant to provide an open source implementation of a test system
conforming to the IMS/NGN Performance Benchmark specification, ETSI TS 186 008.

The modifications made to SIPp include many new features that were required in order to implement the IMS benchmark specification and to apply the resulting test
system to potentially large IMS systems. These features and changes are detailed in a later section.

The scenario files currently provided cover the following scenarios from the specification:

• Successful call
• Successful messaging
• Registration
• De-registration
• Re-registration

A report generation tool is provided that post-processes the data gathered during a benchmark run and produces a report in accordance with the benchmark
specification.

IMS Bench SIPp is based on a modified SIPp and still supports the original SIPp scenario commands as well as a series of extra commands and parameters.

This makes it suitable not only to test IMS core networks or IMS network elements, as targeted by the IMS Performance Benchmark specification, but also standalone
SIP proxies, SIP application servers, B2BUAs, etc., whether they are IMS compliant or not. And this can be done while still benefiting from the large-scale
benchmarking capabilities, the deep automation, and the report generation functionality of IMS Bench SIPp.

Compared to the original SIPp, it also adds a more realistic traffic profile with its multi-scenario support and the use of a statistical distribution for scenario initiation.

Here are examples of reports generated by IMS Bench SIPp for two hypothetical systems:

• Example Report with a hypothetical IMS Core as SUT
• Example Report with a hypothetical SIP proxy as SUT

A relative drawback of the great flexibility of this test system is that, from the large variety of ways it can be configured and used, only some would be compliant with
the ETSI specification. For this reason, it also comes with a configuration tool for generating benchmark configurations that are suitable for benchmark runs according
to the specification. It allows the user to enter, through a menu-driven process, the value of parameters as they appear in the specification and translates this to
configuration files appropriate for the SIPp-based implementation. Using this script to configure the benchmark is recommended for first time users and for users who
want to be sure they run the benchmark in accordance with the specification.

IMS Bench SIPp

Page 2
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

It is however possible to generate custom benchmark configurations for specific cases, outside the scope of the specification (for example testing non-IMS systems).
This can be done by editing the configuration and/or scenario files by hand. Even in this case, the configuration tool can still be useful to get an initial version of the
configuration and also to learn some aspects of the toolset.

2. Getting IMS Bench SIPp

"IMS Bench SIPp" is released under the GNU GPL license and all the terms of the license apply. It is provided to the SIP and IMS communities by Intel Corporation.
It is based on SIPp and we hope the changes made for the implementation of the IMS Performance Benchmark can be useful to the wider SIPp user community as
well.

The source tree containing the source code for all the components described here can be obtained from the Subversion repository as described in the installation
section of the reference documentation.

Intel does not provide any support nor warranty concerning IMS Bench SIPp. Support can be obtained on a best effort basis through the SIPp mailing lists that Intel
engineers also monitor.

3. Tested Platforms

Although SIPp works on most UNIX operating systems, the IMS Bench SIPp has only been tested on Linux Fedora Core 6 and on RedHat Enterprise Linux 4 Update
4. Most other Linux distributions should also work but since performance and timing precision are an important aspect of the test system, one should be very careful
and make sufficient validation of the test system when running it on other distributions or other UNIX flavors. Please also note the platform tuning required as
explained in the installation section of the reference documentation.

4. Design Objectives

The changes and additions made to SIPp were driven by specific requirements from the ETSI IMS/NGN Performance Benchmark specification, as summarized below
(own interpretation):

• A mix of session setup, registration, deregistration and instant messaging scenarios must be executed concurrently
• Scenarios must be selected at random with defined probability of occurrence for each type of scenario (for example 30% messaging, 50% calling, 10%

re-registrations, 5% new registrations, 5% de-registrations)
• The number of scenario attempts per time unit must follow a statistical Poisson distribution
• Users involved in the scenario must be selected at random, from the set of users that are suitable for the scenario (e.g. a fresh registration scenario must pick a user

who's not registered yet)

As a result of these requirements, the test system must ensure that the scenario execution is precisely known beforehand. This means for example that the test system

IMS Bench SIPp

Page 3
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

must be sure that, assuming the System Under Test (SUT) is operating correctly, when it places a call from a user to another one, the call will succeed and follow
exactly the expected scenario. This requires that the test system picks a user that is registered. This is not obvious because at the same time users must deregister and
later register again because of the mix of scenarios running concurrently. Also there are variations on the calling scenario where the called party rejects the call. In this
case, the UAC and UAS sides must have agreed on the expected behavior.

Another objective was to make the SIPp-based test system scalable and highly performing in order to be able to use it for testing very powerful systems and systems
with large numbers of users without requiring dozens of test systems attacking one single System Under Test.

Finally, it was also considered important that the test system be capable of generating several times almost exactly the same load over time, despite its intended
fundamentally random behavior, so as to help estimate the validity of benchmark scores and to help in troubleshooting test system or SUT issues.

5. Limitations

5.1. Versus the specifications

This implementation of the specification is not complete yet, but provides a sound framework for further development and supports the most important aspects and use
cases of the specification. The most challenging technical aspects have already been covered in order to reduce the risk of later encountering a major obstacle that
would require significant design changes.

The main limitation is in the set of supported scenarios. The scenarios currently provided lack the "low occurrence" scenarios or variations on already implemented
scenarios (Rejected call, Message to not registered user...). Implementing the missing scenarios should not require significant source code changes.

The scenarios have not been thoroughly checked for compliance with 3GPP IMS specifications. The current implementation has everything that was required by the
System Under Test used for testing but it should by no means be considered as a reference for 3GPP compliant IMS implementations.

The current implementation does not support IPSec. This means that the connection between the Test Systems and the P-CSCF component of the SUT is using
unencrypted SIP messages over UDP. One should be aware that IPSec processing is likely to have a high performance impact on the P-CSCF component. The current
implementation is therefore not suitable for evaluating the performance of a P-CSCF as it would normally be used in 3GPP IMS deployments.

5.2. Other Limitations

In order to speed up the implementation, some features of the original SIPp have been ignored and are therefore probably not working anymore. They have at least not
been tested in this branch. If you wish to use them, you should either not use the IMS Bench SIPp branch or expect some work to do on the source code to fix/restore
them.

The following are the known areas that have been intentionally left out:

IMS Bench SIPp

Page 4
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

• Other transports than UDP (TCP, TLS) (known to be broken)
• IPv6 support (known to be broken)
• 3PCC operation (presumably broken)
• PCAP Play (not tested)

6. Test System High Level Overview

The Test System consists of one "manager", one or more SIPp load generators, and optionally one or more system monitoring agents for CPU and memory utilization
reporting. These are logical components and multiple of them can be running on the same system.

The SIPp load generators execute the various benchmark scenarios. Each SIPp instance is loaded with the full set of scenarios. Originating scenario attempts are
started according to a statistical distribution, and the scenario to execute is itself selected at random, as well as the users involved in the scenario. Each SIPp instance
has its static set of users that it emulates. Each user is assigned a unique IP address + UDP port combination. By default, each SIPp instance has a single IP address
and assigns different UDP ports to the users, but a compile time option and corresponding configuration allow supporting many IP addresses in a single SIPp instance
in order to make the setup more realistic and avoid that traffic be blocked by overflow attack protections at the SUT.

The manager is responsible for
1. Configuring the SIPp instances: uploading the scenarios, sending configuration data (e.g. parameters that are used in the scenarios, list of other SIPp instances)
2. Carrying out the various steps of the benchmark run by instructing the SIPp instances to set the ratios of each scenario in the scenario mix and the rate of scenario

attempts as defined in the benchmark configuration
3. Monitoring the failure rate in order to stop the benchmark when a defined threshold is exceeded (max % of Inadequately Handled Scenarios)
4. Logging system resource utilization (CPU, MEM) reported by the system monitoring agents (from the SUT and/or the Test Systems)

During a benchmark run, the SIPp instances dump measurements (scenario attempts and outcome, timing measurements, retransmissions...) into local files. In
addition, they also communicate summary information (number of scenario attempts made, number of failed scenario attempts...) back to the manager so it can
monitor the evolution of the benchmark run and stop it in case failure thresholds are exceeded.

During the run, the manager also writes a benchmark raw report that contains all relevant configuration information as well as information about all the steps (changes
in scenario mix and/or scenario attempt rate) it performs.

After the run, a post-processing tool loads the benchmark raw report, looks up the IP addresses and path information for the various SIPp instances, fetches the data
files that they produced during the run, and generates a report in the form of an HTML file and a series of PNG gnuplot graphs, all packed within an MHTML file
(Multipurpose Internet Mail Extension HTML - RFC 2557).

The manager and the SIPp instances communicate over TCP connections. The SIPp instances also communicate together over TCP for the non-SIP messages they
exchange (user reservation, timing data).

IMS Bench SIPp

Page 5
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

In order to collect system statistics from the SUT, according to the ETSI benchmark spec, a small monitoring agent (called CpuMem) must be running on the SUT and
communicates over TCP with the manager. This agent is included in the source tree and is known to work on Linux and Solaris. This is however optional if report
compliance with the spec is not an issue.

7. New Features and Changes to SIPp

Here is a non-exhaustive list of "feature-level" changes that have been made to SIPp. Many of them are probably only really useful in combination with others but
they are listed separately for the sake of clarity.

Change Details

Multiple scenarios support per SIPp instance Multiple scenarios can be loaded by a single
SIPp instance. Each scenario has its own
statistics, etc. Keyboard commands can be used
to switch between scenarios (to see the
corresponding data on screen) and potentially to
change the scenario being executed.

Multiple SIPp instances remotely controlled by a
central 'manager'

Typical setup includes 1 manager (new piece of
code not doing any SIP processing) that
coordinates multiple SIPp 'agent' instances.
The SIPp instances can be running on the same
physical system or on different ones. This
should allow nice scaling. The manager feeds
the same set of scenarios to each SIPp instance
before starting a run and then instructs the SIPp
instances to change the scenario attempt rate
according to a configuration file. The
configuration specifies, for each step of the run,
the occurrence rate of each scenario, as well as
the rate of scenario attempts, as constant or as
increasing steps.

Users and user pools Each SIPp has a set of users that it represents
and whose data it loads from a data file. Users
are placed into pools. New scenario commands
allow picking a user at random from a specified
pool. User pools are used to provide a simple
representation of user state. For example a
calling scenario picks a user from the pool of

IMS Bench SIPp

Page 6
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

already registered users. The registration
scenario picks users from the "not registered"
pool.

Inter-SIPp instances control messaging
(a sort of much extended 3PCC)

If the scenario requires interactions with a server
side counterpart (e.g. UAC->SUT->UAS), the
client side scenario has a new command to
allow the SIPp playing the client role to select a
partner SIPp instance at random (from those
that registered with the manager). It then sends
a custom message (over a separate TCP
transport which would normally run on a
separate LAN from the network under test) to
the partner telling it the server scenario that it
requires as well as some extra data so the
server side can later identify the first SIP
message of the scenario when the client side
sends it. The server scenario then typically
starts - even before a first SIP message is
received - by selecting a user from an
appropriate local pool and sending a response
to the client side SIPp telling it the user URI that
can be used for the scenario (i.e. the To URI).
This allows the client side to really start the SIP
part of the scenario.
This scenario user reservation procedure makes
it possible to guarantee the execution of the
scenario - assuming the SUT operates correctly
- and also allows the individual scenarios to
remain very simple as they don't have to
accommodate multiple possible paths and
outcomes.

One UDP port per User In order to be as realistic as possible, each user
is associated with its own IP address + UDP port
combination. Default operation uses a single IP
address. One can then run multiple SIPp
instances on the same system, each running on
a different (real or virtual) IP address.

Multiple IP addresses Optionally, to make it even more realistic or to

IMS Bench SIPp

Page 7
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

optimize performance of the test system (Linux
IP stack may scale better with the number of IP
addresses than with the number of ports), it is
also possible to distribute the users onto many
IP addresses within the same SIPp instance.

Poisson distribution for scenario attempts New scenario attempts can be initiated following
a statistical Poisson distribution; the user
reservation procedure is scheduled so that the
actual SIP scenario start follows the Poisson
distribution.

Timing measurements between different SIPp
instances

New scenario commands were also added in
order to allow agent and server side to
exchange timing information, and also to allow
performing computation on timing
measurements. This makes it for example
possible to compute the time it took for the
INVITE to get from the UAC, through the SUT,
to the UAS.
Scenario XML files can also specify maximum
values for timing measurements (direct or
computed from other measurements or
timestamps, local or remote). These maximum
values are checked at the end of the call and the
call is marked as failed in case a maximum is
exceeded (even though the scenario might have
reached its end without actual timeout or other
error). The manager collects the counters of
attempted and failed scenarios (due to scenario
error or exceeded max time) and determines
when a run or step has failed (i.e. percentage of
failed scenario attempts went above a threshold
- Design Objective in IMS Benchmark spec) and
stops the run.

User variables User variables are similar to call variables but
are attached to a user and can therefore be
carried over from one scenario attempt to the
next.
Example: store the Service-Route received

IMS Bench SIPp

Page 8
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

during the registration scenario and use it when
later placing a call or sending an IM.

Performance improvements Under Linux, epoll() is now used to reach a
much higher timing precision in scheduling new
calls and also to significantly lower the CPU
utilization of SIPp. The keyboard handling thread
was removed and replaced by polling on stdin,
and the remote control thread was also
integrated into the main polling loop so that each
SIPp instance runs as a single threaded
process. One can run multiple instances to take
advantage of multi-core systems.

Scenario statistics A new statistics file is created with a line for
each scenario attempted, indicating the scenario
executed, the start time, the result (success or in
case of failure, which case of failure) and the
timing measurements as listed in the scenario
XML file.

Report Generator A perl script allows post-processing the data
gathered during a run and producing a report
(HTML + gnuplot PNG graphs) matching the
requirements of the IMS Performance
Benchmark spec. It can also be customized in
many ways through a report configuration file.

Various New distribution supported for pause durations:
Poisson
Added on_unexpected message and scenario
attribute in order to jump to failure case label in
scenario
Possibility to enable/disable default SIP behavior
on a per scenario basis
"Generic parameters" to be used in scenarios
(e.g. %RING_TIME) can be provided in
manager configuration and loaded to SIPp
instances (in addition to being supported on
SIPp command line).

IMS Bench SIPp

Page 9
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

IMS Bench SIPp

Page 10
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

	1 Overview
	2 Getting IMS Bench SIPp
	3 Tested Platforms
	4 Design Objectives
	5 Limitations
	5.1 Versus the specifications
	5.2 Other Limitations

	6 Test System High Level Overview
	7 New Features and Changes to SIPp

