Seagull - OpenCall TCAP

Table of contents

1 TCAP ProtOCOI AELAIIS........ccveeieiiieiteeie ettt et e b et e saeesse e sesseesaeeseeneesreeseennenneensens 2
2 Compiling Seagull With OCTCARP SUPPOI......ccueiieiieerieeeeseeseseesieeseeseesseesesseesseessesseessessesseessesssssseessens 2
3 Getting StArted WIth TCAP.... ..o bbbttt e b e b e bt s beeneeneas 2
I T 1TSS USSP PP 2
K 1 £ (VA= o] = 1 = o ST 3
AUSING SEAGUIL.....cceeee ettt e et s e et e e a e et e e e ae e e te e ehe e e be e eRe e e teeeRe e e beeanee e reeeneeereennes 9
4.1 Transport protocols and chanNElSfOr TCAP.........cee e 9
4.2 TCAP Specific parameters ManagemMENT..........cccueieerieieseeseeeseesreeseeseesseeseeseesseesesseesseessessesssesssens 10
25 T 1 1Y 0] (= o S 10
4.2.2 Dialogue portion (ITU ONIY)......oouoiieiiseeiee e 11

5 CONFIGUIATON TIIES.....eei ettt b et e st e sbe et e s ae e beeneesneesreenee e 14
5.1 GENENTC CONFIGUIBLION.c.ueeiieeitie et estee ettt et et e e te et e s e e sbe e st e e beeeaaeeseesseeebeesneeeseesseeenseesnneanneennes 14
S N O AN o [Tox i o = SRR 15
SN R Y 0= TSRS PR PP 15
S (= [SRS 15
37 1 = 10 | 17
SN2 ol (0] 4 7= YRS 18
5.2.5 CONFIQUIatioN PAIAMELEIS.........eeiuieiieeitie ettt ettt et ste e e te e e et e e sse e e be e saeeebeesseeenseesrasenseesnaeenseens 19
5.3 Actionsin scenario COMMANAS FOr TCAP.........oi i e enes 20
B REFEIEINCE. ... ettt b e Rt bR R e e e e e R ARt Rt Rt Rt Rt et et e b e nns 20
6.1 GENEriC CONFIQUIatiON FEFEIENCE........ccuirieieerierieeiee ettt bbbttt n e bbb nne s 20

B.1.1 TCAP CONFIGUILION. ...ttt ettt e e e e bbbt e st e e e e e e et e sn e b e nbeeneene e e enes 20

Seagull - OpenCall TCAP

The TCAP implementation in Seagull consist in the full implementation and support of HP OpenCall SS7
(http://www.hp.com/go/opencall/) TCAP API. This implementation supports both TCAP over
SS7/E1/T1/31/V35 and also TCAP over SIGTRAN / M3UA or SUA.

Both ITU and ANSI flavors are supported. A Seagull dictionary is available for each of those.

For ANSI, Seagull only supports ANSI90 (HP OpenCall SS7 does not officially support ANSI96). It uses TCAP_API100 compile flag and must be
linked to first version of the libSS7utilSAAA.so library (IibSS7utilAAA .s0.1) if several versions of thislibrary exist on the system (refer to Generic
configuration section).

By default, OCTCAP support is disabled when compiling Seagull. To enable OCTCAP support, you must
uncomment the "HP OC TCAP transport library" section in build.conf file and recompile Seagull.

In addition, OCTCAP include files must be present on the system on which Seagull is compiled. It is
advised to compile Seagull on the OCSS7 platform.

As HP OpenCall SS7 (http://www.hp.com/go/opencall/) is a pre-requisite for TCAP support in Seagull, an OCSS7 compliant platform must be
selected.

So that you can get familiar with Seagull, here is an example that will launch one TCAP server (a server
expects amessage as the first scenario command) and one TCAP client (a client sends a message as the first
scenario command). The scenario is the following:

Open two terminal sessions. Terminal 2 will be the server and Terminal 1 the client. Examples are located in
the "run" directory. So the first thing you need to do isto go in this directory (in both terminal windows):

In Terminal 2 window type:

In Terminal 1 window type:

)
)
Q
@
N

http://www.hp.com/go/opencall/
http://www.hp.com/go/opencall/

Seagull - OpenCall TCAP

On Terminal 2 (server side), you will see:

Y ou can take alook at the log files, which contain the TCAP messages exchanged. By default, those files

arerespectively cl i ent . dat e. | og andser ver. dat e. | og, suffixed with the date and time at which
traffic started.

How easy was that? Now let's jump to the next section to learn how all that works.

Hereisthe script (start_client.ksh) that launched the client in our example:

On some systems, you might need to include the path to the HP-OC SS7 api into the environment variable SHLIB_PATH : "/opt/OC/lib/" for SS7 3.x
and "/opt/HP-AIN/SS7_WBB/sharedlib" for SS7 2.x . Add the following export in your Seagull script: "export
SHLIB_PATH=$SHLIB_PATH:/opt/OC/lib/* for HP-OC SS7 3.x or "export SHLIB_PATH=$SHLIB_PATH:/opt/HP-AIN/SS7_WBB/sharedlib/"
for HP-OC SS7 2.x .

On some HP-UX systems, you might need to include the following export in your Seagull script: "export SHLIB_PATH=/usr/local/bin".

This example is based on one client that sends the TC_BEGIN and exchanges TC_CONTINUE messages
with one server that receivesa TC_BEGIN and answers by TC_CONTINUE messages, until it sends the
TC_END message.

Both sides are relying on the TCAP dictionary provided with the tool. We take the example of an ITU
configuration. The dictionnary is. octcap-itu-dictionnary.xml Refer to dictionary configuration section for

Page 3

Seagull - OpenCall TCAP

more information on the format of this dictionary. The dictionary is specified using the - di co parameter on
the command line.

The generic configuration (including network and other parameters) is different for the client and the server.
Theclientusesconf. client-itu.xm andtheserver usesconf. server-itu.xm .The
configuration file is specified using the - conf parameter on the command line.

Here are both files;

i nstance"
i nst ance"

Page 4

Seagull - OpenCall TCAP

Table 1: Example client and server configuration

Seagull - OpenCall TCAP

Do not forget to modify the classname and OSSN (in the open-args command) and the OPC, DPC, OSSN and DSSN (at the end of the files) for each
SS7 configuration.

} Refer to generic configuration section for more information on the format and possible values. (

Now comes the real stuff: the scenario.

First, the scenario source: tcap.conf.client-itu.xml (tcap.conf.client.xml.html)

And now the commented version:

Page 6

tcap.conf.client.xml.html

Seagull - OpenCall TCAP

Seagull - OpenCall TCAP

A scenario can be considered as failed or success based on conception choices. In our example, a default scenario for the reception of an unexpected
TC_L_CANCEL isconsidered asfailed. But you could make the choice to consider it as successful, depending on your needs.

Hereis an explanation on how are generated the uid and pid which are necessary to identify acall. As shown on the schema, the uid is set by the
application ONCE for each call at the beginning. This is done using the "set-value" function (as shown in the example above). Note also that it is
mandatory to restore the values in each message that you send, as done in the scenario above.

Page 8

Seagull - OpenCall TCAP

Set by the application
(incremented at each call)

New call indication

uid TC_BEGIN

pid: 0 \
TC CONTINUE i @

nid: 1 /

nid

Set by the TC_CONTINUE

stack on the id: 1 uid: 29 (incremented at each call)
Ej»gl: 22 \ A .

client side pid: 14

upon reception TC END uid: 29
uid: 1 / pid: 14
pid: 22

CLIENT SERVER

Set by the stack on
the server side upon
reception

Set by the application

In this case, the application is Seagull and the stack isthe OCSS7/TCAP (http://www.hp.com/go/opencall/) stack.

To send messages, you first have to define the transport that you use. Thisis done in the configuration file
(see the example below). The transport is caracterized by a name and afile, which isthe dynamic library
used. Thisdynamic library is delivered with Seagull. It will call function from the correct library. To find
thefinal library, it will use the parameters set in the init-args field. Ininit-args, you can specify the
following parameters:

« flavour (possible values: WBB, WAA for ITU (sccp_service kindisset to
TCX_SCCP_SERVICE_ITU_WB) and AAA, ABB for ANSI (sccp_service kindis set to
TCX_SCCP_SERVICE_REGULAR))

« pathto the OCSS7'slibSS7util.d shared library (not necessary for OCSS7 >= 3.x -

/opt/HP-AIN/SS7_WBB/sharedlib for OCSS7 2.2)

library (name of the libSS7util shared library) - libSS7utilFLAVOUR.9l by default (FLAVOUR being

WBB, AAA, WAA or ABB).

Only the flavour parameter is mandatory for OCTCAP.

Page 9

http://www.hp.com/go/opencall/

Seagull - OpenCall TCAP

Some examples:
e init-args="flavour=AAA": for an OCSS7 3.x+ with AAA (ANSI) flavour

e init-args="path=/opt/HP-AIN/SS7_WBB/sharedlib;flavour=WBB;library=libSS7util.d": for an OCSS7
2.2 with WBB (ITU) flavour

For ANSI, with HP OpenCall SS7 3.2 on |A64 and with HP OpenCall 3.3 and upper on all plaform, the library name must be specified to
"library=libSS7util .s0.1".

Then you can open one channel for the transport that you have defined.

Y ou can open only one TCAP channel !

A channel makes the link between a transport and a protocol.

When defining a channel, you specify the classname, OSSN, application id and instance id.

The application id needs to be unique for each application launched.

Those definitions are done in the configuration files, such as presented in those examples:

The invoke identifier is one of the header parameters of a component. It is assigned by the invoking side at
invocation time. Each invoke id value is associated with an operation invocation. The management of this
invoke id is done on the end that invokes the operation. Invoke id can be different on both sides. An invoke
id value may be reallocated when the corresponding operation is done. The value of theinvoke id hasto be
between 0 and 255. Here is an example of aclient. Thisclient sendsa TC_INVOKE with invoke id 1. It then
waitsfor 2 TC_INVOKE components within a primitive TC_CONTINUE:

Page 10

Seagull - OpenCall TCAP

In the header of the TCAP primitives, you find the dialogue portion. This dialogue portion is composed of:

« the application context name: it isthe identifier of the application context,
« theuser information: it isinformation exchanged between the TCAP users; thisinformation is
completely transparent to SS7 TCAP.

It is often useful to be able to extract those information from a received message to be able to inject them
into a message to be sent. Here is an example of how to treat those information to be able to do so.

In this example, the client sends a message with the user informtion and aplication context name of the
dialogue portion set. The server that receives the message extract some information from the user
information to send it back, in a different order. It isimportant to change the order of the information as
some fields of the user information refer to the origin and the destination of the message.

Extract from the client scenario:

Page 11

Seagull - OpenCall TCAP

The external datafile:

Extract from the server scenario:

The action portion goes on with the storage of dialogue portion elements:

Page 12

Seagull - OpenCall TCAP

<store name="DL G-APP-CTXT-NAME" entity="dlg-app-ctxt-name"></store>
<l-- DLG-APP-CTXT-NAME is 0x060704000001003203 —>

<store name="DL G-USER-INFORMATION" entity="dlg-user-information"></store>
<l-- DLG-USER-INFORMATION is
28 1b 06 07 04000001010502 a010300e a20259aa2ﬂ4@1@[!@0®——}

<store name="DL G-TUSER

entity="dlg-use ormatie
begin= end=(21"=</store>

<l-- DLG-USER-INFORMATIQX ORI is B4020269aa

<store name="DL G-USER-INFORMATION-AL Remember: the last number stored is
C ARG e Sl stored from position “end-1",
begin @ end "23-*‘-1.-'5 efte> This 3 whv “a1™ 3 di

<1 DLG.USER. INFORMATION A LG Al . > 1s 18 why “al™ 1s not stored into

DLG-USER-INFORMATION-ORIG

<store name="DL GATSER-INFORMATION-DEST"
entity="dlg-wéer-info ion"
begin= end={29"=</store>

<!-- DLG-USER-INFORMATION-DEST is 060204010000¢ce - =

And now, the server will restore the values in the header of the TC_CONTINUE primitive that it is sending
right after:

Page 13

Seagull - OpenCall TCAP

It is not possible to use only the user information, without setting the application context name. If you do so, you will get an error.

} It is possible to use only the application context name. (

There are 3 different configuration files:

« Generic configuration file - describing traffic and network parameters
» Protocol dictionary configuration file - rarely to be edited
« Scenario file - description of the message exchanges

The generic configuration file describes the network environment as well as traffic parameters.

The network environment is described through "transport channel entities". The transport entity is then used
as an attribute of send andr ecei ve scenario commands, as well as during the opening of the transport
channel (see below).

Page 14

Seagull - OpenCall TCAP

TCAP messages and parameters are described in XML dictionaries. The tool comes with a complete set of
TCAP dictionaries: onefor ITU and one for ANSI.

A dictionary contains several XML sections

The "types" section doesn't contain any definition of type. The basic types aready exist, such as number,
string, etc.

"header" section contains the description of message header. For TCAP, thisis:

Seagull - OpenCall TCAP

Seagull - OpenCall TCAP

About the fielddef "termination”: the default valueis"BASIC". It can also be set to "PREARRANGED". This value can be changed in the scenario.

"body" section contains the description of message body (which naturally comes after the header). For
TCAP, thisisan ANSI example:

Seagull - OpenCall TCAP

Be careful with the fielddef “class'. The default valueis"1" and the possible values are:
* 1: class 1 both RESULT and ERROR may be sent back,

* 2: class 2 only ERROR may be sent back,

* 3: class 3 only RESULT may be sent back,

* 4: class 4 neither RESULT nor ERROR may be sent back.

This parameter in significant only in a send command.

About the fielddef "operation-code-tag": the default valueis "NATIONAL" for ANSI and "LOCAL_TYPE" for ITU canalso setitto
"PRIVATE" for ANSI, and to "GLOBAL_TYPE" for ITU. This value can be changed in the scenario.

"dictionary" section contains al possible parameters that a message can contain. Here is a description for
TCAP:

Seagull - OpenCall TCAP

"configuration-parameters" section contains al possible TCAP parameters that can be defined in the
configuration file. For each parameter a default value can be defined. Y ou can also specified if the parameter
ismandatory or not. Here is an example of TCAP configuration parameters for I TU:

Hereis an example of TCAP configuration parameters for ANSI:

The configuration of the point codes (OPC, DPC), SSN (OSSN, DSSN) and global title (GT) is done in the configuration files. The default values are
set in the dictionary. Y ou can modify their values in the scenario. In this case, the values in the scenario overwrite those in the configuration files.

Seagull - OpenCall TCAP

The <send> and <receive> scenario commands include an <action> and <primitive> sections.
The <action> section can be placed before or after the <primitive> section.

Actions placed before the primitive (called "pre-actions") are executed before the message is actually sent
or received. Actions placed after the primitive (called "post-actions') are executed after the message is sent
or received.

For example, actions that can be placed before a primitive are actions to set the values of someids or to set
some fields using external values, before sending a message. Example:

Actions that can be placed after a primitive are actions to store some values after the message has been
received, or to check some values. Example:

The list of possible actionsis available in the reference section.

This section isthe reference for all values and parameters of Seagull.

Thistableisalist of traffic parameters applicable only to TCAP. Those parameters are present in the generic
configuration file.

dest-routing-type It defines the way the <defi ne
messages are routed entity="confi g-parant
for outgoing nane="dest-routing-type"
messages. Possible val ue="DPC_SSN' >
values are: GT (routing </ defi ne>

on Global Title), SSN
(routing on SSN only),
GT_SSN (routing on
Global Title and SSN)
and DPC_SSN (routing
on DPC and SSN).

Seagull - OpenCall TCAP

orig-routing-type

orig-address-pc

dest-address-pc

orig-address-ssn

dest-address-ssn

It defines the way the
messages are routed
for incoming
messages. Possible
values are: GT (routing
on Global Title), SSN
(routing on SSN only),
GT_SSN (routing on
Global Title and SSN)
and DPC_SSN (routing
on DPC and SSN).

It defines the
originating adress point
code. You can modify
this value in the
scenario. In this case,
the value in the
scenario overwrites the
one in the
configuration files. Be
careful in ANSI: this
value has to be given
as an integer and not
in the format a.b.c. For
example: 1.1.10 ->
0x01010a=65802.

It defines the
destination adress
point code. You can
modify this value in the
scenario. In this case,
the value in the
scenario overwrites the
one in the
configuration files. Be
careful in ANSI: this
value has to be given
as an integer and not
in the format a.b.c. For
example: 2.2.57 ->
0x020239=131641.

It defines the
originating adress
SSN. You can modify
this value in the
scenario. In this case,
the value in the
scenario overwrites the
one in the
configuration files.

It defines the
destination adress
SSN. You can modify
this value in the
scenario. In this case,

<defi ne

entity="confi g-parant
name="ori g-routing-type"
val ue="DPC_SSN' >

</ define>

<defi ne

entity="confi g-parant
nane="ori g- address- pc"
val ue="2">

</ defi ne>

<defi ne
entity="confi g- parant
nane="dest - addr ess- pc"
val ue="1">

</ def i ne>

<defi ne
entity="config-parant
nane="ori g- address-ssn
val ue="20">

</ defi ne>

<defi ne

entity="confi g- parant
nane="dest - addr ess- ssn
val ue="10">

</ defi ne>

Page 21

orig-gt

dest-gt

orig-gt-indicator

orig-gt-translation

orig-gt-numbering

orig-gt-nature

dest-gt-indicator

dest-gt-translation

dest-gt-numbering

dest-gt-nature

the value in the
scenario overwrites the
one in the
configuration files.

It defines the
originating global title
number.

It defines the
destination global title
number.

It indicates the type of
the originating global
title number.

It indicates the type of
translation for the
originating global title
number.

It indicates the type of
numbering for the
originating global title.

It indicates the nature
of the originating global
title.

It indicates the type of
the destination global
title number.

It indicates the type of
translation for the
destination global title
number.

It indicates the type of
numbering for the
destination global title.

It indicates the nature

Seagull - OpenCall TCAP

<defi ne

entity="confi g-parant
name="orig-gt"

val ue="123">

</ define>

<defi ne

entity="confi g-parant
nane="dest-gt"

val ue="123">

</ def i ne>

<defi ne

entity="confi g- parant
nanme="ori g-gt-i ndi cator"
val ue="tc_gt typel">

</ define>

<defi ne

entity="confi g- parant
nane="ori g-gt-transl ation"
val ue="tc_t _unused">

</ defi ne>

<defi ne

entity="confi g- parant
nanme="ori g-gt-nunberi ng"
val ue="t c_unknown_nuni >
</ defi ne>

<defi ne

entity="confi g-parant
nane="ori g-gt-nature"

val ue="t c_subscri ber_nb">
</ defi ne>

<defi ne

entity="confi g- parant
nane="dest-gt-i ndi cator"
val ue="tc_gt_typel">

</ defi ne>

<defi ne

entity="confi g- parant
nane="dest-gt-transl ati on"
val ue="tc_t_unused">

</ defi ne>

<defi ne

entity="confi g-parant
nane="dest - gt - nunberi ng"
val ue="t c_unknown_nuni' >
</ define>

<defi ne

Page 22

Seagull - OpenCall TCAP

parameter-type-set

discon-on-err

of the destination
global title.

Parameter set
indentifier. ANSI only.
This parameter's
default value is
"SEQUENCE_TYPE".
It can also be set to
"SET_TYPE".

SEQUENCE_TYPE

Disconnect on
transport error.

entity="confi g-parant
nane="dest - gt - nat ur e"

val ue="tc_subscri ber _nb">
</ defi ne>

<defi ne

entity="confi g-parant
name="par amet er -t ype-set"”
val ue="SEQUENCE_TYPE" >

</ define>

<defi ne

entity="confi g-parant
name="di scon-on-err"
val ue="no" ></ def i ne>

Table 1: List of TCAP traffic parameters (traffic-param entity)

Page 23

	1 TCAP protocol details
	2 Compiling Seagull with OCTCAP support
	3 Getting started with TCAP
	3.1 First try
	3.2 First try explained

	4 Using Seagull
	4.1 Transport protocols and channels for TCAP
	4.2 TCAP specific parameters management
	4.2.1 Invoke id
	4.2.2 Dialogue portion (ITU only)

	5 Configuration files
	5.1 Generic configuration
	5.2 TCAP dictionary
	5.2.1 Types
	5.2.2 Header
	5.2.3 Body
	5.2.4 Dictionary
	5.2.5 Configuration parameters

	5.3 Actions in scenario commands for TCAP

	6 Reference
	6.1 Generic configuration reference
	6.1.1 TCAP configuration

